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This interim scientific report covers work performed between 1
. March 1983 and 29 February 1984. The contract monitor is Dr. Henry
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investigator is James R. Fienup. Major contributors to the effort are
James R. Fienup and Christopher C. Wackerman. Additional contributors
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SUMMARY

This report describes the results of the second year of a
three-year research program to investigate methods for obtaining
diffraction-1imited images of space objects, despite the turbulent
atmosphere, by reconstructing images from data provided by optical
interferometers (particularly stellar speckle interferometry).
Accomplishments include the following. (1) Improved image
reconstruction algorithms were developed. (2) A better understanding of
modes of stagnation of algorithms was developed. (3) The performances
of the shift-and-add image formation method and of one recursive
algorithm were investigated. (4) A second recursive algorithm was shown
to suffer from a uniqueness problem. (5) A potential new remote sensing
application of the iterative reconstruction algorithms was explored.
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N DIFFRACTION-LIMITED IMAGING OF SPACE OBJECTS II
i 1 March 1983 to 29 February 1984
1
INTRODUCTION AND OBJECTIVES

I This report describes the results of the second year's effort in a

three-year research program to investigate methods of obtaining
. diffraction-limited images of space objects, despite the turbulent
; atmosphere, by reconstructing images from data provided by optical
! interferometers (particularly stellar speckle interferometry).

Atmospheric turbulence typically limits the angular resolution of

s earth-bound optical telescopes to one second of arc or worse, which is
i fifty times poorer than the theoretical diffraction 1limit of a 5-meter
. optical telescope. It is possible to gather diffraction-limited
5 information through the turbulent atmosphere by a variety of
N interferometric techniques, including Michelson stellar interferometry
- [1], intensity interferometry [2], amplitude interferometry [3], and

stellar speckle interferometry [4, 5]. However, this diffraction-
- limited information is in the form of the modulus (magnitude) of the
: Fourier transform of the object being viewed. Until recently only the
D autocorrelation of the object, but not the object itself, could be
reconstructed from this data, except for special cases.

In recent years an jterative method [6-9] has been developed for

4 reconstructing an object from its Fourier modulus, thereby making

E possible the reconstruction of diffraction-limited imagery from N

; interferometer data. The algorithm utilizes the measured Fourier Eﬁ%ﬁ

g modulus data as well as (1) the a priori information that the object's ;&ﬁz

) spatial (or angular) brightness distribution is a nonnegative function f xj
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and (2) information about the object's diameter which can be computed
; from the autocorrelation function. The algorithm and its numerous
.‘ applications is described in detail in Appendix A [9].
The goal of the program is to further investigate and develop this
method of obtaining diffraction-limited images. Included in the .
] three-year program are investigations into improving the reconstruction . 1
algorithm, developing methods for processing noisy astronomical data, A ’_j
studying the uniqueness of the reconstruction, and investigating ways to R
increase the spectral bandwidth of stellar speckle interferometry. In
i the second year of the effort, the emphasis was on developing new and -. i
improved reconstruction algorithms. Initial studies of the uniqueness L
problem and of the properties of astronomical data were also begun. '_"';i:;
R
| ]
i The research accomplishments for the second year are summarized in - ;—-—-
' Section 2 and are described in more detail in Sections 3 through 8 and "
in the Appendices. References are listed in Section 9.
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RESEARCH ACCOMPLISHMENTS T
‘ 1d
The second year of research effort can be divided into seven major
topics.
1. The new recursive algorithm [10] described in last ;;"j
year's report [11] was implemented and tested both on o
noise-free and on noisy Fourier modulus data.  } ’i
: 2. Improvements in the iterative Fourier transform 1.21;
! reconstruction algorithm [6~8] were made that enable one to '
reconstruct difficult objects that previously defied

reconstruction attempts.

3. Alternative iterative algorithms were devised.

4. Investigations were made into the problem of stripes
: in the reconstructed images.
- 5. The shift-and-add algorithm was implemented and
tested on a complicated extended object.

e - - -

l 6. Results were obtained indicating a possible new

. remote sensing application of the iterative reconstruction
algorithm.

_ 7. Recently published claims regarding the uniqueness of

! phase retrieval when the edges of the object are known were

shown to be false by counterexample [12].

, Recent publications arising from this work are References 10 and

J 12-18. Reference 9 is noted as a recent related publication arising
from a previous research program [19] and is included as Appendix A. . ]
References 10, 16, 17, 18 and 12 are included as Appendices B, C, D, E '
and F, respectively.
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The seven topics are briefly described in the remainder of this
section and are described in more detail in Sections 3 to 8 and in the
Appendices.

2.1 NEW RECURSIVE ALGORITHM

As described in last year's report [11] and in Appendix B, a new
recursive algorithm has been developed which is capable of
reconstructing an object from its autocorrelation function, which can be
computed from the modulus of its Fourier transform. It works for
objects having latent reference points--unresolved points within the
object field that are not sufficiently far from the main part of the
object to satisfy the condition for holography, but sat? 7 weaker
conditions. The recursive algorithm was coded on +mputer and
exercised on two different types of objects using autocerrelations .
having a variety of signal-to-noise ratios. As expected ... recursive
algorithm was fairly sensitive to noise, making it less practical for
real-world applications than the iterative Fourier transform algorithm
[6-8]. Improvements were made in the recursive algorithm to make it
somewhat less sensitive to noise. A more detailed description of this
work is given in Section 3.

2.2 IMPROVEMENTS IN THE ITERATIVE ALGORITHM

o
The iterative Fourier transform algorithm has been particularly Bk
successful on objects having complicated shapes, such as satellites [6, _§§f
7, 17]. However, for some types of objects, such as those whose support o
L

fills a square, the algorithm has a tendency to stagnate without finding
a solution [20]. Two modifications of the basic approach were

demonstrated for overcoming this problem. The first was to employ the .
defogging method of Bates and Fright [21]. The second modification is
to break the symmetry of the partially reconstructed image in order to -

R PR .
. 1 . .
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allow the algorithm to converge to one of the two possible solutions.
This is described further and an example is shown in Section 4.

e
. P

2.3 ALTERNATIVE ITERATIVE ALGORITHM

The theoretical justification for the input-output iterative
Fourier transform algorithm [6-9] alludes to a control theory -

point-of-view. Yet rigorous control theory had not actually been
applied to the problem. Alternative algorithms based on control theory
are presented in Section 5. Further elaboration of these algorithms and

VO DT NPy Y

N

their implementation and testing will be required to determine whether
they will offer improved performance over existing algorithms.

2.4 INVESTIGATION OF STRIPES

Lo

In some cases the output of the iterative algorithm has the
appearance of original object but with a pattern of low-contrast stripes

-
PO

superimposed [22, 17]. The phenomenon of stripes appearing in the
reconstructed image was extensively investigated. Properties of the
phase of the Fourier transform of the striped image were studied.
Several methods for removing the stripes were investigated. We feel
that we are on the threshold of solving this problem, as described in
Section 6. When this problem is completely solved, then it will be
possible to answer the question of the uniqueness of the reconstructed

PR v—-a P
S PR R
Ja g ¢ A ’l‘

image (see Appendix D) more definitively.

2.5 SHIFT-AND-ADD

LT FRAPRAPI
.. P
PPV 7 ST TR

The shift-and-add method of imaging from short-exposure
astronomical images has in the past been exercised primarily for very
simple objects having in their field-of-view very bright unresolvcd
points [23, 24]. The shift-and-add method was attempted both on a

....................................................................................

)

a




ERIM

point-like object and on a more realistic object--a satellite having
strong glints. Although the result for the point-like object was very
good, the result for the extended object was very poor, indicating that
the shift-and-add method is not appropriate for complicated extended
objects. These results are shown in Section 7.

2.6 NEW ITERATIVE APPLICATION

A new remote sensing application for the iterative Fourier
transform algorithm was developed under ERIM internal funding [25]. It
permits the operation of, say, a synthetic aperture radar system having
reduced performance requirements for the phase stability of its local
oscillator and motion compensation. It might also be useful for the
electron microscopy phase retrieval problem. It involves the iterative
retrieval of phase using a single intensity measurement plus a shape
constraint on the object or upon the pattern of radiation by which the
object is illuminated. Under the present program the issue of the shape
constraint was explored further. It was found that certain interesting
shapes are sufficient for reconstructing a complex-valued object
function from the magnitude of its Fourier transform. The

reconstruction algorithm and some reconstruction results are shown in
Section 8.

uh

2.7 AMBIGUITY OF PHASE RETRIEVAL USING BOUNDARY CONDITIONS

Claims have been made that an object can be uniquely reconstructed o
from its Fourier modulus via the autocorrelation function if the values éu
of the edges of the object are known [26]. It is shown in Appendix F
that knowledge of the autocorrelation function and of the boundary
values of the object are not sufficient to uniquely specify the object T
in all cases. It is further shown how and why the recursive algorithm y .'
of Hayes and Quatieri [26] fails for the nonunique cases. Recently it §¢j§
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5& has also been shown that the recursive algorithm [26] can fail even when X
Ef; the object is uniquely related to its Fourier modulus. An example of .
L where it fails for a unique object is in the case of an object like that

shown in Figur - la of Appendix F but with the value of 4 in the second

column from the right and the second line from the top replaced by any
other value. This last result will be described in more detail in a

later report.
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3
EXPERIMENTAL RESULTS USING NEW RECURSIVE ALGORITHM

As described in Appendix B, a new recursive algorithm has been
developed for reconstructing an object from its autocorrelation
function, which can be computed from the modulus of the Fourier
transform of the object. It is applicable to objects having latent
reference points [10], and knowledge of the support of the object may be
required. In this section examples of reconstruction experiments using
the recursive algorithm are shown.

Figure 3-1 shows results of the recursive reconstruction algorithm
for which the Fourier modulus (or autocorrelation) data was corrupted
with varying amounts of noise. The object consists of an equilateral
right triangle of 16 pixels on each side having a brighter rectangle and
a brighter square imbedded in it. It is assumed known that the object's
support is the triangle. Figure 3-1(a) shows the original object.
Figure 3-1(b), (c) and (d) are the reconstructed images when the
root-mean-squared (RMS) error of the Fourier modulus data was 0.005175,
0.05585 and 0.01795, respectively. The RMS error of these reconstructed
images is 0.0400, 0.6088 and 0.1390, respectively. That is, for the
noisiest case of Figure 3-1(c), a 5.6 percent error in the data resulted
in a 60.9 percent error in the reconstructed image.

To get a feel for how bad a 60 percent error is, consider the
following. Suppose the object were constant, equal to unity, over the
known region of support (within the triangle). If the reconstructed
image were a set of random numbers uniformly distributed between 0 and
b, then the rms error for the optimum value of b can be shown to be 50
percent. That is, the reconstructed image shown in Figure 3-1(c),
having RMS error of 60 percent, is worse than a reconstructed image
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Figure 3-1. Images Reconstructed Using Recursive Algorithm.
(a) Original object; (b)-(d) images reconstructed from
autocorrelations having root-mean-squared error
(b) 0.0400, (c) 0.6088, and (a) 0.01795.
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consisting of random numbers.

By comparison, in experiments using the iterative Fourier transform
algorithm (on a different object), a 5% error in the data resulted in a
20% error in the reconstructed image [22]. Therefore from this limited
experience it appears that the recursive algorithms is, as predicted
[10], highly sensitive to noise. The iterative Fourier transform
algorithm would appear to be the preferred method of image
reconstruction.

For the triangular support case, one can generate as many as three
separate estimates for each value, one associated with each of the three
corner pixels. In the absence of noise these three reconstructions are
jdentical, but with noise present they will in general be different, and
an improved algorithm would decrease noise effects by averaging the
three estimates. This method was tried and the following was
discovered. The computation of a value depends not only the corner
pixel but also on a number of previously reconstructed values as well.
In the presence of noise each of these reconstructed values will have
some error associated with it, and the more of them that are used to
reconstruct a new value, the more error that new value will have. It
was found that the estimate that is generated from the maximum number of
previously reconstructed values has accumulated so much error that
including its value in the average degrades rather than improves the
reconstruction. The optimum number of estimates to use was found to
depend on the signal-to-noise ratio and on distance from the edges of
the triangle. For most values, only one or two estimates was optimal.
This resulted in a modest improvement over the algorithm employing only
a single estimate.

10
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4
IMPROVEMENTS IN THE ITERATIVE FOURIER TRANSFORM ALGORITHM

Although the iterative Fourier transform algorithm has been shown
to be successful for space objects such as satellites [6, 7, 17], it can
have problems converging for some other types of objects. For example,
for the object shown in Figure 4-1(a), a picture of a bird bounded by a
square, the algorithm has a strong tendency to stagnate without finding
a solution [20]. Two methods were demonstrated for overcoming this
problem and converging to a solution: the defogging method of Bates and
Fright [21] and a new method of temporarily using a reduced-area
asymmetric support constraint. The latter method seems to be the more
important of the two.

The defogging method attempts to compensate for the fact that a
low-contrast object on a bright background causes very little
“interference," that is, its Fourier transform has not much structure.
The defogging method consists of reducing the large central lobe of the
Fourier modules, raising the relative values at the higher spatial
frequencies. In the image domain this corresponds to reducing any
slowly-varying bias-11ike (or fog) component of the image, thereby
emphasizing the finer-structure details. Phase retrieval algorithms
that work poorly on a low-contrast image tend to work better on the
defogged version of the image. After the defogged image tis
reconstructed, the slowly-varying fog component is added back in. As a
final step the refogged image is refined by further iterations of phase
retrieval.

A reduced-area asymmetric support constraint is used for types of
objects which often cause the iterative Fourier transform algorithm to
stagnate on a partially reconstructed image. Recall that there is

.............................................
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Figure 4-1. Use of Asymmetric Support Constraint. (a) Original T
object; (b) output image from iterative Fourier transform :
algorithm which has stagnated; (c) output image after
application of reduced-area support constraint followed by
further iterations.
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always a two-fold ambiguity: f(-x, -y) and f(x, y) have the same Fourier
modulus. The ambiguous image f(-x, -y) is just f(x, y) rotated by 180°
which is equivalent to being reflected through the origin. When there
is a symmetric support as in the case of the object shown in Figure
4-1(a), the algorithm may stagnate with an output such as the one shown
in Figure 4-1(b), which has features of both the object and the 180°
rotated object. The output image changes little with further
iterations. Apparently the algorithm gets stuck when it is half-way
between the two different solutions: it is unable to shake one off and
converge to the other. In the case where an asymmetric support
constraint is known, this particular mode of stagnation tends not to
occur since the asymmetric support constraints moves the solution toward
f(x, y) and away from f(-x, -y).

The method of using a reduced-area asymmetric support constraint is
as follows. A support constraint is defined that includes one side
(including edges) of the object but not the other side and edges. This
support constraint is chosen to be smaller than the known support of the
object and to be as asymmetric as possible, so that it has little in
common with the 180°-rotated version of the support constraint. A few
iterations are then performed with the reduced-area asymmetric support
constraint (rather than using the correct support constraint). It is
hoped that this causes one of the two images, f(x, y) or f(-x, -y) to be
preferentially enhanced over the other. After switching back to the
correct support constraint, either f(x, y) or f(-x, -y) will be strong
enough compared with the other that upon further iterations the
algorithm converges to the stronger one and away from the weaker one.

Figure 4-1(c) shows the reconstructed output image after using both
the defogging method and the reduced-area asymmetric support constraint
for a few iterations then continuing with further iterations using the
correct support constraint and the original Fourier modulus data.
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Comparing it with the output image shown in Figure 4-1(b), it is seen
that these techniques yielded much better results in this case.

These methods have been exercised in only very limited circum-

stances and have not yet been optimized and automated. Further work to

: develop these promising methods is clearly called for. Such auxiliary
n procedures are not necessary for the objects that are easier to :
reconstruct but are very important for the more difficult cases.
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5
ALTERNATIVE ITERATIVE ALGORITHMS

The iterative Fourier transform algorithm, which is described in L
detail in Appendix A, works very well in a wide range of situations but ,:;fﬁi
converges slowly or not at all in some cases. Furthermore it is always T
desired to arrive at a solution using fewer iterations and less computer ®
time. For these reasons we are always looking for ways to improve the :
existing algorithms or devise alternative algorithms that converge

oL ';.‘

faster. The two algorithms shown in Figures 5-1 and 5-2 are examples of _""}
alternative algorithms that have been conceived. They were arrived at ".~’ﬁ
from the point of view of control theory. ;jl]
In the first algorithm, depicted in Figure 5-1, it is assumed that o

the individual sidelobes of the complex Fourier transform of the object -
can be modelled by a fairly simple mathematical formula having a small '
number of free param2ters. By curve fitting each lobe of the Fourier

modulus (amplitude) to the model, one could determine the parameters and

thereby determine the phase. One would first curve fit one larger lobe,

compute the magnitude of the model from the fitted parameters, and

subtract that model from the modulus measurement. Smaller lobes would

be curve-fitted and subtracted resursively from the residual modulus.

After all the lobes are modelled, the corresponding phase would be

combined with the measured modulus and the image would be computed by

inverse Fourier transformation. It is yet to be determined whether the

Fourier transform can be modelled as described above.

In the second algorithm, shown in Figure 5-2, the difference in the
phase of the Fourier transform of the current estimate and that of the
previous estimate is multiplied by a gain factor (K) and added to the
previous phase estimate. This is similar to previous iterative
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algorithms except that the roles of the two domains are reversed.

Both the methods described above, as well as others, merit further
research and implementation.

18
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INVESTIGATION OF THE STRIPES PHENOMENON

In a number of cases the iterative Fourier transform algorithm has
converged almost all the way to a solution, but then stagnates at an
output image that looks like the original object but having a set of
stripes superimposed [17, 22] (see Appendix D). In most cases the
stripes are of such low contrast as to be hardly noticeable, but
occasionally the contrast of the stripes has been high enough to be
objectionable. Since the Fourier transform pair is not in perfect
agreement with the data and constraints in this condition, the striped
images is at a local, rather than the global, minimum of the error, and
therefore it does not represent a lack of uniqueness. Although earlier
attempts at solving this problem (the stagnation at a striped imaged)
failed, we are currently developing methods that will eliminate the
stripes.

Since an output image having stripes has a Fourier modulus equal to
the measured (assumed to be the correct) Fourier modulus, the stripes
must be due to the effects of phase errors. The phase errors must be
located in small regions of the Fourier domain in order to produce such
a2 regular striped pattern, with the locations of the regions in the
Fourier domain being related to the spatial frequency (spacing) and
orientation (angle) of the stripes.

A first attempt at eliminating the stripes was to add noise to the
input image after stagnation at a striped output had occurred. The hope
was that the added noise would move the solution far enough away from
the local minimum so that further iterations of the iterative Fourier
transform algorithm would lead to the global minimum rather than falling

back into the same local minimum. When this was tried it was found that

........
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- after further iterations the algorithm did indeed fall back into the
‘; same local minimum, even when the amount of noise added was very large.

A second attempt at solving the stripes problem relied on the
knowledge that the phase error was a localized phase error in the
i Fourier domain. It was found that if a constant phase was added to the
h: phase of the Fourier transform of the object in a given region of the
Fourier domain (and in order to preserve the Hermitian property of the
Fourier transform, the same constant phase was subtracted in the
symmetric region of the Fourier domain), then the corresponding image
would look like the original object but with a pattern of stripes
superimposed. The resulting synthesized images thus produced had an
appearance very much the same as the striped images produced by the
jterative algorithm. However, when these images were used as the input
to the iterative algorithm, the synthesized stripes immediately went
away and the algorithm quickly converged to the true image. This
constrasted sharply with the stripes produced by the iterative
algorithm, which would not go away. Therefore the phase errors that
cause the stripes problem are more complicated than simple constant
phase errors over some region of the Fourier domain. This was further
shown by attempts to eliminate the stripes by adding various constant
phase errors at appropriate regions of the Fourier domain. All such
attempts failed to remove the stripes.

A third attempt at removing the stripes involved the addition of
Blaschke-1ike phase functions to the Fourier transform. A Blaschke-like
phase is the phase of the unity-modulus function

1 - u/z*

Blu, 2) = 772
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where u is a Fourier-domain coordinate and z = a + ib. The Blaschke-
1ike phase is global in effect but has its most rapid variation within a
region about u = b. Varying phase error corrections of this form were
also found to be unsuccessful in solving the stripes problem.

Most recently we have developed two procedures that should solve
the stripes problem in most cases. They are based upon two facts:

1. The phase errors that produce the stripes are located
in small regions of the Fourier domain, and

2. Output images arrived at by the iterative Fourier
transform algorithm started with different initial inputs of
random numbers are unlikely to have the same pattern of
stripes.

In the first method, three output images are produced by the
iterative Fourier transform algorithm using three different initial
inputs of random numbers. The three output images are translated so as
to be centered at the same point in order to remove any linear phase
difference in their Fourier transforms. Then at each point in the
Fourier domain, the complex values of the three Fourier transforms are
compared. The value whose distance from the other two values is the
greatest is discarded and a new value is formed by taking the average of
the remaining two (closest) values. In this manner, if in a given
region of the Fourier domain one of the three has a phase error (related
to the stripes or otherwise), that phase error is eliminated.

In the second method only two different output images need to be
produced by the iterative Fourier transform algorithm. Although the
stripes are typically of highest contrast where the object is brightest,
they also exist outside the known support of the object. So by Fourier
transforming the region of the output image having only stripes (outside

.......................

CREe Je e Sves 0 e AbE S B A T de S Sah Shge Snen e e o~

!

RO R
IR . ST

Lo t AN . L.
LIPS T P TSR N PN L;;~49_AJ

........
AAAAAAAA

a .
Gt elelal el Lottt

M P S * AT
L Y TR S DU .S S N LA




ey o o e~ G e ¥ TN T '.'."-'.l.“v‘-'.‘-‘.‘. LA TR AT T R A S e A S R A S SR ] .'.'."."‘1

............................

ERIM

o
the support of the object), the regions of the Fourier domain having the iiii
phase error can be identified. Then a new phase estimate is made by ;2;5
using the phase of the Fourier transform of the first output images ;fﬂf
where it is not influenced by the phase error, and using the phase of '
the Fourier transform of the second output image where the first was
influenced by the phase error. :
).
In both methods above, after the new estimate is formed, further .;i
iterations should be performed to allow it to converge closer to a : ﬁi
solution. o
)

These methods of correcting the stripes are automatic in the sense
that no human judgement or decisions are required during their
operation.

Both methods were exercised on a single example and were found to

perform very well. Further experimentation with these methods is ilaﬁ

required to determine their effectiveness in a wider variety of T

circumstances. !?f;
’
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EXPERIMENTAL RESULTS USING SHIFT-AND-ADD

Shift-and-add [23, 24] is a method of reconstructing images of
astronomical objects from multiple short-exposure images. It consists
of shifting all the images so that their maximum values all lie at the
same coordinate, then adding (or averaging) them all. This has been
shown to work well for objects consisting of a collection of delta
functions (points) [23, 24], but it was not demonstrated for realistic
extended objects, such as satellites. We implemented the shift-and-add
method on the computer and exercised it both on an object consisting of
a collection of delta functions and on an extended object.

Figure 7-1(a) shows an object consisting of three
delta-function-1ike points having relative brightness of 100:20:10.
Simulated point-spread functions from a telescope including atmospheric
turbulence [22] were convolved with the object to arrive at simulated
blurred images, an example of which is shown in Figure 7-1(b). Figure
7-1(c) shows the result of shifting and adding 156 blurred images. The
three points can be clearly seen, although they are slightly blurred and
each is surrounded by a fog. We took shift-and-add one step further by
combining it with a form of subtractive deconvolution related to the
CLEAN method. An estimate of the effective point-spread function was
found by applying shift-and-add to a single point. The outputs from
shift and add were then CLEANed by subtracting from the image a version
of this point-spread function shifted and scaled to match the peak of
the brightest point in the image, and the brightness and position of the
peak was noted. The second and third points were CLEANed in a similar
fashion in succession. Figure 7-1(d) shows the brightness and positions
of the three CLEANed peaks. The brightness and positions are exactly
the same (to within an overall translation) as the brightness and
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Figure 7-1. Shift-and-Add Algorithm for a Point Object. (a) Original
object; (b) image blurred by atmospheric turbulence;
(c) output image from shift-and-add; (d) CLEANed version
of output image.
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positions of the points in the original object. Although no noise was
present in the data (but only 156 blurred images were used), this is a :
very impressive result, demonstrating the power of the shift-and-add f:',:fi
method for this type of object.

object, shown in Figure 7-2(a), was purposely chosen to be one that
satisfies the requirement that it have bright delta-function-like
components. That is, it should be one of the easier extended objects
for shift-and-add to reconstruct. Two examples of the blurred images of
k the object are shown in Figures 7-2(b) and (c). The result of using

h' Figure 7~2 shows a similar experiment for an extended object. The

Py

r g
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’ shift-and-add on 156 blurred images is shown in Figure 7-2(d). In this

5 case there is very little information about the original object in the
shift-and-add image. Further processing using the CLEAN method did not
improve the result. s

This one set of experiments was not sufficient to fully delineate
the types of objects for which shift-and-add is effective, but we did *
demonstrate that shift-and-add works very well for an object consisting -—ﬁ
of a small number of delta-function-like points dominated by a brightest -
one, but works very poorly for an extended object, even one containing
isolated bright points.
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Figure 7-2. Shift-and-Add Algorithm for an Extended Object.
(a) Original object; (b), (c) images blurred by atmo-
spheric turbulence; (d) output image from shift-and-add. L
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RECONSTRUCTION OF COMPLEX-VALUED OBJECTS USING SUPPORT CONSTRAINT

As discussed elsewhere in this report, for the astronomy problem
one has in the object domain a nonnegativity constraint and a weak
(1oose) support constraint. There are however some problems for which
the object is complex-valued or bipolar, precluding a nonnegativity
constraint, but for which the support constraint is much stronger
(tighter). The same iterative reconstruction algorithm as for the
astronomy problem can be used, only without applying the nonnegativity
constraint. From the theory of Bruck and Sodin [27], one might expect .4
the solution to usually be unique. For supports known to have certain .
shapes, such as a triangular shape, the solution is known to be unique

(see Appendix B). __J

Reconstruction experiments using only a support constraint were “ 4
performed on objects having various support constraints to test the
importance of different types of support constraints. Figure 8-1(a) -3
shows an object having triangular support and nonzero values in its j
three corners. These conditions ensure that the object is uniquely
related to its Fourier modulus (see Appendix B). The image shown in
Figure 8-1(b) was reconstructed from the Fourier modulus and the a
priori knowledge of the triangular support using the iterative Fourier - 4
transform algorithm. Nonnegativity was not used although the object
happens to be nonnegative. In this case the support was known very
precisely. The algorithm converged very rapidly to the correct
solution. -
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Since the uniqueness proof requires the three corners to be
nonzero, we wanted to determine the importance of nonzero corners to the o
iterative algorithm. The same experiment was performed for the object -
shown in Figure 8-1(c), which is identical to the object shown in Figure
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Figure 8-1. Examples of Reconstruction from Fourier Modulus.
(a) Object in triangle with bright corners, (b) recon-
structed image; (c) object in triangle with zeroed corn-
ers, (d) reconstructed image; (e) object in triangle with
tapered edges, (f) reconstructed image.
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8-1(a) but with the corners zeroed out. The image shown in Figure
8-1(d) was reconstructed from its Fourier modulus and is the correct
solution, but more iterations were required in this case than for the
object having three bright corners. Therefore the brightness of the
corners does play a role, but not a crucial one. The effect of the
sharpness of the edges of the object was also investigated. A third
object, shown in Figure 8-1(e), which is identical to the object shown
in Figure 8-1(c) except that its edges are tapered rather than being
abrupt, was formed. The image resulting after over a hundred iterations
of the iterative Fourier transform algorithm is shown in Figure 8-1(f).
Although the image is very recognizble, it has a noisy appearance. The
iterative algorithm found it much more difficult to reconstruct this
image than the ones with abrupt or sharp edges. Therefore it appears
that edges (although not absolutely essential) are very important to the
ability of the iterative algorithm to reconstruct images using only a
support constraint in the object domain.

Under an internally funded ERIM program, these results were
extended to the case of complex-valued objects for applications such as
synthetic-aperture radar (SAR) [25]. Since those results are pertinent
here, they will be briefly reviewed. The idea is to have a SAR sensor
that does not require an accurate local oscillator, phase-coherent chirp
pulses, or compensation of sensor platform motion. This could be done
if one could reconstruct the image without accurate knowledge of the
phase of the SAR signal history. This might be possible by using the
iterative Fourier transform algorithm if a strong support constraint
were present. One might have, for example, the ability to illuminate
the target area with an illuminaton pattern of known shape or have the
far-field pattern of the receive antenna accept reflected radiation from
an area of known shape. The modulus information together with the
support (beam shape) constraint could then be combined by the iterative
Fourier transform algorithm to arrive at a diffraction-limited image.
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Figure 8-2 shows an example of a reconstruction experiment [25] of

i this type. Figure 8-2(a) shows the magnitude of a 64 x 64 pixel
sub-area of a complex-valued SEASAT SAR image of an area of land. A

binary mask was formed to define the illumination pattern of a
hypothetical antenna. The illumination pattern consists of a pair of

" ellipses, each of 3:1 aspect ratio. A pattern consisting of two
separated parts was chosen because theory indicates that the solution is

more likely to be unique in that case [13]. The object, the magnitude

of which is shown in Figure 8-2(b), was obtained by taking the product

of the image shown in Figure 8-2(a) and the illumination pattern. The

' modulus of the Fourier transform of the object was computed and is shown
in Figure 8-2(c). This is equivalent to the modulus of the SAR signal
history that would have been collected had the terrain been jlluminated

i by the fixed illumination pattern consisting of the two ellipses. The

Fourier modulus was then used together with the known illumination
pattern as a support constraint to reconstruct the image which is shown
» in Figure 8-2(d). The reconstruction was essentially perfect.

Figure 8-3 shows further examples of similar reconstruction ]
experiments performed under the current effort. The goal of this set of ,f;f}
experiments was to explore the effects of employing different types of ::"3
support constraints. Specifically, we wanted to explore what effect the ;
separation of the parts of the support had on the success of the " ]
iterative reconstruction algorithm. As shown in Figure 8-2, for widely )
separated support parts, the iterative algorithm performed very well. e
Figure 8-3(a) and 8-3(b) show the same object and reconstructed image, ‘ :
respectively, but at a different scale. Figures 8-3(c) and 8-3(d) show
a second object and reconstructed image, respectively, for a case in
which the separation between the two parts of the support is much
smaller. Again the reconstructed image is very faithful. Figure 8-3(e)
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. Figure 8-2. Example of Reconstructing a Complex-Valued SAR Image from
» the Modulus of Its Fourier Transform Using an Illumina-
tion-Pattern Support Constraint (a Pair of Ellipses).
(a) Magnitude of terrain image with broad illumination

5: pattern; (b) magnitude of ideal terrain image with special

e illumination pattern; (c) Fourier (phase history) modulus;

- (d) magnitude of reconstructed image. (Taken from [25].)
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Figure 8-3. Examples of Reconstructing a SAR Image from Modulus of Its
Fourier Transform Using Various Support Constraints with
the Iterative Transform Algorithm. Illuminated objects:
(a), (c), (e), (g); respective reconstructed images: (b),

(d), (f), (i).
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and 8-3(f) shows a third object and reconstructed image, respectively,
for a case in which the two parts overlap (that is, the support is
contiguous). In this case the reconstructed image, even after several i
hundred iterations, does not closely resemble the object, although upon ’
close inspection one can find some features in common. For a fourth

case (not shown) in which the support consisted of a single ellipse, the

iterative reconstruction algorithm did not produce a recognizable image _
after several hundred iterations. Figure 8-3(g) and 8-3(h) show a fifth )
object and reconstructed image, respectively, for a case in which the

support was shaped like a donut having a hole offset from the center.

In this case the reconstructed image is very faithful. This last

example is curious since it does not have separated parts, yet a '
one-dimensional cut through the center of the support does have
separated parts.

The ability demonstrated above to reconstruct a complex-valued
image from the modulus of its Fourier transform using only a support
constraint may have very important implicatons for fine-resolution
coherent imaging systems such as SAR.

33
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The examples of Figure 8-3 demonstrate that the separated nature of L4

the support does have an important effect on the succes of the iterative i':j

reconstruction algorithm, and that further investigations along these f{f

lines is warranted. Eré;
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Reconstruction and synthesis applications of an iterative
algorithm

J. R. Fienup

Environmental Research Institute of
Michigan

P.O. Box 8618

Ann Arbor, Michigan 48107

Abstract. This paper reviews the Gerchberg-Saxton algorithm and varia-
tions thereof that have been used to solve a number of difficult recon-
struction and synthesis problems in optics and related fieids. It can be
used on any problem in which only partial information (including both
measurements and constraints) of the wavefront or signal is available in
one domain and other partial information is available in another domain
(usually the Fourier domain). The algorithm combines the information in
both domains to arrive at the complete description of the wavefront or
signal. Various applications are reviewed, including synthesis of Fourier
transform pairs having desirable properties as well as reconstruction
problems. Variations of the algorithm and the convergence properties of

the algorithm are discussed.

1. INTRODUCTION

There exist many problems that are very difficult to solve in
astronomy, x-ray crystallography, electron microscopy, spec-
troscopy, wavefront sensing, holography, particle scattering,
superresolution, radar signal and antenna synthesis, filter design,
and other disciplines that share an important feature. These are
problems that involve the reconstruction or synthesis of a
wavefront (or an object or a signal, etc.) when partial information
or constraints exists in each ot two different domains. The second
domain 1s usually the Fourier transform domain. This paper
describes @ method of combining all the available information in
the two domains 1o arrive at a complete description, thereby solv-
ing the problems.

The problems fall into two general categories: (1) reconstruct the
entire information about a function (an image, wavefront, signal,
etc.) when only partial information is available in each of two do-
mains; and (2) synthesize a (Fourier) transform pair having
desirable properties in both domains. A reconstruction probiem
arises when only partial information is measured in one domain,
and in the other domain either partial information is measured or
certain constraints are known ¢ priori. The information available in
any one domain is insufficient to reconstruct the function or its
transform. A synthesis problem typically arises when one wants the
transform of a function to have certain desirable properties (such as
uniform specirum, low sidelobes, etc.) while the function itself
must satisfy certain constraints or have certain desirable properties.
Because arbitrary sets of properties and constraints can be con-
tradictory, there may not exist a transform pair that is completely
desirable and satisfies all the constraints. Nevertheless, one sceks a
transform pair that comes as close as possible to having the
destrable properties and satisfving the constraints in both domains.

Both the reconstruction and the synthesis problems can be ex-
pressed as follows, if the meaning of the word “‘constraints’ is
broadened to include any kind of measured data, desirable proper-

PR P P PP I A L

ties, or a priori conditions:
Given a set of constraints placed on a function and another
set of constraints placed on its transform, find a transform
pair (i.e., a function and its transform) that satisfices both sets
of constraints.

Once a solution is found to such a problem, the question often
remains: is the solution unique? For synthesis problems, the
unigueness is usually unimportant-—one is satisfied with any <olu-
tion that satisfies all the constraints: often a more important prob-
lem 1« whether there exists ¢ny solution that satisfies what mas he
arbitrary and conflicting constraints. For reconstruction problems,
the unigueness properties of the solution are of central importance.
I many different functions satisfying the constraints could give rice
to the same measured data. then a solution that is found could not
be guaranteed to be the correct solution. The question ot unique-
ness must be studied for each problem. Fortunately, a« will be
described later, for some important reconstruction problems the
solution usually is unique.

An effective approach to solving the large class of problem«
described above is the use of iterative algorithms related to the
Gerchberg-Saxton algorithm.! The algorithms involve the iterative
transformation back and forth between the two domains, with the
known constraints applied repetitively in each domain.

The basic algorithm is presented in Sec. 2. A number of different
applications having different types of constraints are described.
and examples are shown in Sec. 3. In Sec. 4 the convergence prop-
erties of the algorithm are discussed. and improved versions of the
algorithm are reviewed. A brief summary and comments are in-
cluded in Sec. §S.

2. THE BASIC ITERATIVE ALGORITHM

The first published account of the iterative algorithm was i< use by
Gerchberg and Saxton' to solve the electron microscopy problem.
For this problem both the modulus (magnitude) of a complen-
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valued image and the modulus of its Fourier transform are
measured, and the goal is to reconstruct the phase in both domains.
Apparently unknown to Gerchberg and Saxton, the method was in-
vented somewhat earlier by Hirsch, Jordan, and Lesem? to soive a
synthesis problem for computer-generated holograms that has a
similar set of constraints. (This will be described later in more
detail.) The method was again reinvented for a similar problem in
computer holography by Gallagher and Liu.} The fact that the
algorithm was invented repeatedly testifies to its simplicity and ef-
fectiveness.

2.1. Gerchberg-Saxton algorithm

In what immediately follows, the iterative algorithm is described in
terms of its application to the electron microscopy reconstruction
problem. An excellent treatment of the electron microscopy phase
problem and its solution by this and other methods can be found in
Ref. 4. Later it is shown how to apply the same principles to a large
class of problems.

Suppose that the electron wave function in an image plane is
described by the two-dimensional (2-D) complex-valued function

fx) = f(x) IZAVE (1)

Its Fourier transform, the wave function in a far-field diffraction
plane, is given by

®©

F(u) = F(u) €W = F[f(x)] = / f(x)ei2Tusx gy | 2)

-0

where x and u are the vector coordinates in the spatial (image) do-
main and the spatial frequency (far-field diffraction) domain,
respectively. The notation used throughout this paper is that func-
tions represented by capital letters are the Fourier transforms of the
functions represented by the corresponding lower-case letters. It is
assumed that the intensity spatial distributions are measured in
each domain, but the phase information is lost. Therefore, one
wishes to reconstruct y(x) and (x) from f(x) and F(u) .

The iterative algorithm for solving this problem is depicted in
Fig. 1. One iteration (the kM iteration) of the algorithm proceeds as
follows. A trial solution tor the wave function (an estimate of the
wave function), g, (x), is Fourier transtormed vielding

G w) = Gy(u) expliog(u)] = o (g (0] . %))

Then a new Fourier-domain function, G(u), is formed by replac-
ing the computed Fourier modulus by the measured Fourier
modulus, F(u) , and keeping the computed phase:

Gy(u) - F(u) explioy(u)]. (4)

The resulting G (u), which is in agreement with all the known
measurements and constraints in the Fourier domain, is inverse
Fourier transformed, yielding the wave function gy(x). The itera-
tion is completed by forming a new estimate for the wave function,
g, . (%) which is obtained by replacing the computed modulus of
g4 (x) with the measured modulus  f(x} , and keeping the computed
phase.

The algorithm consists of no more than enforcing what informa-
tion is available on the wave function, Fourier transforming, im-
posing what information is available on the wave function’s
Fourier transform, inverse transforming, and repeating these sim-
ple operations for a number of iterations. What makes the
algorithm practical is the existence of a fast Fourier transform®
(FFT), so that the number of computations per iteration goes only
as NlogN, where N is the number of samples of the function com-
puted. This compares very favorably with <ome other iterative
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Fig. 1. Block diagram of the iterative error-reduction algorithm.

methods, such as Newton-Raphson,* for which the number of com-
putations per iteration goes as N

A measure of the progress of the iterations, and a criterion by
which one can determine when a solution has been found, is the
normalized mean-squared error, which is defined in the Fourier do-

main by =

/ [ Gyw - F) ]° du

-00
o
/ F(u) *du
-0

or in the image domain by

@©
. - 0o

Eje — oo (6)

m
Tty
tl
A

It has been shown that the algorithm converges in the sense that the
mean-squared error can only decrease at each iteration.'*" The
issue of convergence will be discussed in greater detail in See. 4.

2.2. Error-reduction iterative algorithm

It is now known that with slight modifications this same algorithm
can be applied to many different problems having a variety of
available constraints or measurements.” Let the function f(x) repre-
sent a wavefront, an object, a signal, an antenna array, a spectral
density function, an electron density function, etc.. where < is an
N-dimensional vector (spatial, angular, time, etc.) coordinate.
Depending on the problem, f(x) may be complex valued or real
valued and, if real, may or may not be nonnegative. Its Fourner
transform, F(u), is given by Eq. (2) and is complex valued for most
problems. The N-dimensional vector u is a (spatial, angular, time,
etc.) frequency coordinate. One can instead consider another
transformation of f(x), such as the Fresnel transform, which has
been used for more than one problem.>%¥ For simplicity of discus-
sion, the Fourier transform will be assumed, but the reader should
keep in mind that what is «aid also applies to a number of other
transformations as well (although the method becomes less attrac-
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tive if a fast transform aigorithm is not available).

With only slight modifications, the Gerchberg-Saxton algorithm
can be used to solve the wide class of problems described in Sec. 1.
Referring again to the block diagram of the algorithm in Fig. 1, all
that is required is to impose constraints in each domain that are
pertinent to the problem of interest. At the k!h jteration, g(x), an
estimate of f(x), is Fourier transformed, yielding Gy(u), which is
given by Eq. (3). Then a new Fourier-domain function G(u) is
formed from Gy(u) by making the smallest possible changes in
G (u) that allow it to satisfy the Fourier-domain constraints. For
example, if the Fourier-domain constraint is that the Fourier
modulus equals  F(u): over some region of the Fourier domain,
then F(u) is substituted for |Gy(u)| in that region. The new
Fourier-domain function Gy (u), which satisfies the Fourier-domain
constraints, is inverse Fourier transformed to yield gz (x). To com-
plete one iteration, a new estimate g, , 1(x) is formed from gy(x) by
making the smallest possible changes in g (x) that allow it to satisfy
the function-domain constraints. One example is that if the func-
tion is complex valued and it is constrained to have a modulus
equal to f(x). over some region of space, then ; f(x)| is substituted
for gy(x) in that region. A special case of this is when the func-
tion is to be zero outside a certain interval (the Fourier function is
bandlimited). Another example is that if the function is constrained
1o be nonnegative, then gy , |(x) is set equal to gy(x) for those x
where g (x) = 0, and g , 1(x) is set equal to zero for those x where
g:(x) < 0. In summary, one transforms back and forth between the
two domains, forcing the function to satisfy the constraints in each
domain.

For reconstruction problems, whatever characteristics of the ac-
tual F(u) and f(x) that are measured or are known a priori are im-
posed on Gy(u) and gy(x), respectively. For synthesis problems,
one imposes on Gy (u) and gy (x) whatever characteristics one might
desire F(u) and f(x), respectively, to have. Once the constraints are
defined, the algorithm proceeds the same for synthesis problems as
for reconstruction problems. In fact, there are some synthesis prob-
lems that are mathematically indistinguishable from some
reconstruction problems, and they are handled identically by the
algorithm.

The first iteration of the algorithm can be started in a number of
ways, for example, by setting g,(x) or ¢,(x) equal to an array of
random numbers. The iterations continue until a Fourier transform
pair is found that satisfies all the constraints in both domains to
within the desired accuracy (or, if convergence is too slow, until
one loses interest or the money runs out). The mean-squared error
can generally be defined in the Fourier domain by

x
[ Gy () - Ggfu) *du
E.f B (7)
20
] Gy (u) “du
- 00
or in the function domain by
Qc
/ g, (- g “dx
g . (8)
oc
/ 2 (%) Tda
- oo

In cach of these two expressions, the integrand in the numerator is
the squared modulus of the amount by which the computed func-
tion violates the constraints in that domain. It is easily seen that

these expressions reduce to Egs. (5) and (6), respectively, for the
electron microscopy problem.

Just as in the electron microscopy probiem, for problems having
other sets of constraints it will be shown in Sec. 4 that the algorithm
converges, that is, the error decreases at each successive iteration.
The algorithm depicted in Fig. 1 may be referred to as the ‘*error-
reduction”’ algorithm for that reason, as well as to distinguish it
from algorithms described in Sec. 4 that are related to it but con-
verge faster. Typically, the error is reduced very rapidly for the first
few iterations of the error-reduction algorithm, but more slowly for
later iterations. For some applications, the error-reduction
algorithm has been very successful in finding solutions using a
reasonable number of iterations. However, for some other applica-
tions, the mean-squared error decreases extremely slowly with each
iteration, and an impractically large number of iterations is re-
quired. The improved algorithms described in Sec. 4 do much to
alleviate this problem.

2.3. Alternative descriptions of the algorithm

Once a solution (i.e., a Fourier transform pair satisfving all the
constraints in both domains) is found, the error-reduction
algorithm ceases to make changes to the estimate, and the
algorithm locks on to the solution. The operations of enforcing the
constraints in each domain would then leave the function estimate
and its Fourier transform unaltered, since they already satisfy the
constraints. Now let us define the operation Sfg(x)) as the suc-
cessive Fourier transformation of g(x), followed by the imposition
of the Fourier domain constraints, followed by inverse Fourier
transformation, followed by imposition of the object domain con-
straints. That is, the operation S is just the performance of one
iteration of the error-reduction algorithm, and

g . 1(x) = S[gg(x)]. )

From the discussion above, it is evident that any solution f(x) must
satisfy the relation
f(x) = S[f(x)] . (10
When presented in this form, it is seen that the error-reduction
algorithm is a particular implementation of the method of suc-
cessive approximations.'?

The method of successive approximations can be more easily
understood from the following simple example. Suppose one
wishes to solve the following equation for y:

-4y + 1 =0, (an
Based on the relation y - y* + 173, one could write
Vi = Sity) R e 1 (12)

Using the method of successive approximations to find the solu-
tion, one would pick an initial estimate, say v, = 0.1, and employ-
ing Eq. (12) compute ¥, = 0.2501, v. = 0.2539, etc., and rapidly
converge 1o the solution ¥y~ - 0.2541737 _ . . . However, it con-
vergestoy onfy fory, < v” - 0.8967902... . Fory, > v" Eq.
(12) diverges: and for ¥, v, it stays at v, the second solution.
On the other hand, one could just as logically have chosen

Viop = Ss) o Oy - 1t (13

This second form converges to the second solution v for Vo PV
diverges for y, < V', and stays at ¥ for v, v'. Figure 2, a
graphical representation of Eqg. (12), shows the two solutions, v
and v, The irregular staircase between the two curves v and v
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Fig. 2. Method of successive approximations for solving 4y4 - 4y
+1=0

1/4 indicates how the estimate y, approaches the two solutions.
Criteria on the derivative of S(y) determine whether the algorithm
converges.!!

The error-reduction algorithm, as described by Eqs. (9) and (10),
is analogous to the example of successive approximations described
above, except that instead of operating on a scalar y, it operates on
a function g(x). As seen from the example, the method of suc-
cessive approximations may or may not converge, depending on the
particular form chosen and on the initial estimate. Fortunately, as
will be discussed further in Sec. 4, the error-reduction algorithm
never diverges. It may, however, stagnate. A simple example of
stagnation of the method of successive approximations is shown by
the following. In solving x = 2 - x (which has the obvious solution
x = 1), starting with the initial estimate x ;, one obtains X) = 2-X,,
X; = 2-(2-X%5) = Xg, .« -0 X94.] = 2= Xgs X3 = X, €lC., and no
progress is made toward the solution.

Another way of understanding the error-reduction algorithm,
applicable for certain sets of constraints, is the altcrnating projec-
tion of the function onto specified subspaces in a Hilbert space. !2
This, along with the possibility of closed-form solutions,!?® is
discussed in the contribution to this volume by Marks and Smith.

3. APPLICATIONS

A large number of important problems in optics and related fields
fit the problem description in Sec. 1 and can be solved by the
iterative algorithm (by the error-reduction algorithm described in
Sec. 2 and the related algorithms described in Sec. 4). One par-
ticular application, that of spectral extrapolation or superresolu-
tion, is discussed in detail in the contribution to this volume by
Marks and Smith. In this section, several classes of applications are
listed, followed by more detailed discussions of some of the ap-
plications, including examples.

In Sec. 1, a distinction was made between reconstruction prob-
lems and synthesis problems. Another useful way to classify such
problems is according to the type of information available. For one
set of problems, the modulus (magnitude or amplitude) of a
complex-valued function and the modulus of its Fourier transform
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are measured (or are given), and one wishes to know the phase of
the Fourier transform pair in both domains. These include the
phase retrieval problem in electron microscopy, the phase retrieval
problem in wavefront sensing, the design optimization of radar
signals and antenna arrays having desirable properties, and phase
coding and spectrum shaping problems for computer-generated
holograms and other applications. These applications often involve
the Fresnel transform for the near-field case instead of the Fourier
transform.

For another set of problems, the function is known to be real and
nonnegative and the modulus of its Fourier transform is measured.
These include the phase problems of x-ray crystallography, Fourier
transform spectroscopy, imaging through atmospheric turbulence
using interferometer data, and pupil function determination.

For another set of problems, a low-resolution (i.e., a low-pass
filtered) version of a function is measured (i.e., its complex Fourier
transform is measured only over a certain interval), and the func-
tion is known to have a finite extent (i.e., it is zero outside of some
known region of support). This is the spectral extrapolation or
superresolution problem for band-limited time signals or for im-
aging of objects of finite extent.

For another set of problems, the function is known to be non-
negative and of finite extent and its complex Fourier transform is
measured only over a partially filled aperture. These include the in-
terpolation of the complex visibility function for long baseline
radio interferometry and the missing-cone problem in x-ray
tomography.

For still another set of problems, the modulus of a complex-
valued function is given, and one wishes to find an associated phase
function that results in a Fourier transform whose compiex values
fall on a prescribed set of quantized complex values. These include
the reduction of quantization noise in computer-generated
holograms and in coded signal transmission.

Another problem is to reconstruct the modulus of a complex-
valued function from the phase of the function, given the fact that
the Fourier transform of the function has finite support.

The number of types of problems solvable by the iterative
algorithm appears to be limited only by one's ingenuity in defining
different combinations of information that might be available in
each of two domains.

3.1. Modulus—modulus constraints
3.1.1. Electron microscopy

Among the applications for which the modulus is given in each ot
two domains, the electron microscopy phase retricval problem was
one of the earliest applications of the error-reduction algorithm
and has been the problem most heavily investigated.'#5- 1415 The
error-reduction (Gerchberg-Saxton) algorithm has been shown to
perform very successfully for this problem, and the solution is
usually unique.'* The reader is referred to a book by Saxton? for a
thorough review.

3.1.2. Spectrum shaping

A second application for which the modulus is given in each of two
domains is the spectrum shaping problem. Spectrum shaping is a
synthesis problem that can be stated as follows: given the modulus

f(x). of a complex-valued wavefront, g(x) = f(x) explif(x)].
find a phase function 6(x) such that .# [g(x)] is equal to a given
spectrum F(u) . Such a problem is the one suggested by the Escher
engraving shown in Fig. 3, in which a bird transforms into a fish.
One wishes to find a function with modulus being a picture of a
fish, which has a Fourier transform with modulus being a picture of
a bird. Or, in terms of computer holography, find a phase function
to assign to the image of a fish so that the hologram will look tike
an image of a bird. Figure 4(a) shows the actual **bird"" and **fish"
binary patterns used for our experiment. For the first iteration, the
fish object was random phase coded, Fourier transfermed, and the
modulus of the Fourier transform was replaced with the modulus
of the bird pattern shown in Fig. 4(a). The result was inverse
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Fig. 3. Bird transforms into fish (“*Sky and Water” byuM. C. Escher).
This reproduction was authorized by the M. C. Escher Foundation,
The Hague, Holland/G.W. Breughel.

(a)

Fig. 4. Example of spectrum shaping. (a) Bird hologram and
desired fish image; (b) fish output image after random phase
coding of input; (c) output image after seven iterations of the
iterative algorithm.

Fourier trsformed, yielding the very noisy output image shown in
Fig. 4(b). The iterative algorithm was then used for seven itera-
tions, resulting in the improved image shown in Fig. 4(¢c). For this
example, increasing the number of iterations resulted in a further
improvement of the quality of the image; that is, a Fourier
transform pair was found that more closely satisfied the constraints
in both domains.

Spectrum shaping is also important in computer holography for
reducing quantization noise. The objective of computer
holography'f is to synthesize a transparency that can modulate a
wavefront according to a calculated wavefront, often correspond-
ing to Fourier coefficients (or samples of the Fourier transform of
an image) computed by the discrete Fourier transform. Let F =
# [f] be the desired wavefront modulation and f be the complex-
valued function describing the desired image. Due to the limitations
of the recording devices and materials used to synthesize computer
holograms, it is often not possible to represent exactly any arbitrary
complex Fourier coefficient. An extreme example of this is the

(b)

Fig. 5. Computer-simulated images from kinoform. (a} object ran-
dom phase coded; (b) after eight iterations of the iterative
algorithm.

kinoform,!’ which allows nearly continuous phase control by vary-
ing the thickness of the recording medium, but which quantizes the
modulus to a single level. (If the gray-level recording device used to
synthesize a kinoform has a finite number of gray levels, then the
phase is quantized as well.) The desired coefficient F is only ap-
proximated by the quantized value F/ F . Since only the squared
modulus (the intensity) of the image is observed, one is free to
choose the phase of the object (phase code the object) in such a way
as to reduce the variance (dynamic range) of F . In this way the
quantization noise in kinoforms and, to a lesser extent, in other
types of computer-generated holograms can be greatly reduced.
Random phase and various deterministic phase codes! cause con-
siderable reduction in the variance of F | but substantial errors re-
main.'®

It was for the kinoform application that the iterative aigorithm
was first invented.”? Figure § shows an example of its use for this
synthesis problem.” Figure S(a) shows the image resulting when the
input image was random phase coded, encoded as a kinoform in
the Fourier plane, and reconstructed by inverse Fourier transfor-
mation. The ideal image would be the binary ( = 0 or 1) block letters
SU. Figure 5(b) shows the improved result after eight iterations of
the iterative algorithm. In this case, the image-domain constraint is
that the modulus equal the SU pattern, and the Fourier-domain
constraint is that the modulus equal a constant.

A problem very similar to the Kinotorm problem is that of svn-
thesizing a quasi-random radar signal having good autocorrelation
properties. Specifically, one would like to svnthesize a radar signal
f(1) which is a pure phase function, i.e., f(t) - 1, over some inter-
val of time and which has an autocorrelation function which ap-
proaches a delta-function, i.c.. its Fourier spectrum  F(r) 2 is con-
stant over the bandwidth of interest. From the examples shown
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above, it is obvious that the iterative method would be an effective
tool for synthesizing such radar signals.

Another spectrum-shaping application is the phasing of elements
~f an array of antennas in order to achieve a far-field pattern hav-
ing desirable properties. For example, one might wish to phase the
antenna elements in such a way as to minimize the maximum
sidelobe of the far-field pattern or to place nulls of the antenna pat-
tern at several different prescribed locations simultaneously. A
related application for which the iterative method has been used is
the transformation of a Gaussian laser beam into a beam having a
more nearly rectangular profile.2?

3.1.3. Wavefront sensing

The wavefront sensing application is very similar to the electron
microscopy problem. Suppose that one measures the image f(x) 2
of a point source using an aberrated optical system, where the aber-
rations may be due to atmospheric turbulence or due to the optical
system itself. Assuming that the aberration is a pure phase func-
tion, then F(u), the Fourier transform of f(x), has modulus F(u)
equal to the aperture function of the optical system. The problem is
to reconstruct the phase of F(u) given . F(u), and f(x) . Several in-
vestigators®-21-22 have applied the error-reduction algorithm to this
problem with generally good results.

3.2. Nonnegativity—modulus constraints

For some reconstruction problems, the physical quantity of interest
can be represented as a nonnegative function, and one is able to
measure only the modulus of its Fourier transform (or at least the
measured modulus information has a much higher signal-to-noise
ratio than the measured phase). From the Fourier modulus, one
wishes to reconstruct the Fourier phase or, equivalently, the func-
tion itself. Since the autocorrelation of the function is available as
the inverse Fourier transform of the squared Fourier modulus,??
this problem is equivalent to reconstructing the function from its
autocorrelation. This problem, referred to as the phase retrieval
problem of optical coherence theory, arises in spectroscopy,?* a
one-dimensional problem; in astronomy, a two-dimensional prob-
fem; and in x-ray crystallography,* a three-dimensional problem.
In spectroscopy, the nonnegative spectral density, g(v), is the
Fourier transform of the complex degree of temporal coherence,
(), of which 7(r) is most easily measured. In x-ray
crystallography, the nonnegative electron density function, p(x, vy,
7)., which is periodic, is the Fourier transform of the structure fac-
tor Fyyp. of which Fpy is measured by a diffractometer. The
astronomy problem will be described in more detail later.

3.2.1. Unigueness of solutions

For the onc-dimensional problem, use of the iterative algorithm (or
any other method) to reconstruct the function from its Fourier
modulus is of limited interest since the solution in the general case is
usually not unique.?*2" The uniqueness of the solution for the one-
dimensional problem can be analyzed using the theory of analytic
functions, from which one finds that additional solutions can be
generated by **flipping zeros’” of the Fourier transform analytically
extended over the complex plane.**2" The additional **solutions”
have the same support as the original function, but aie not
guaranteed to be nonnegative; therefore one could reduce the
degree of ambiguity by generating all possible “*solutions®” and then
keeping only the nonnegative ones.

For certain special types of one-dimensional functions, there is a
high probability that the solution is unique. For a function having
two separated intervals of support, being separated by an interval
over which the function i« zero, the solution usually is unique, -
but only if the two intervals of support are sufficiently separated. !
Another special type of function for which the solution is usually
unigue is one consisting of a summation of a number of delta-
functions randomly distributed in space; for such functions, one
does not need the iterative method —they c¢an be reconstucted by a
simple  noniterative method involving the product of three
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(b)

Fig. 6. Functions (a) and (b) having the samé_f:ourier modulus.

translates of the autocorrelation function. ™

In the event that multiple solutions do exist, it would not appear
that the algorithm would be biased toward one over another, and
one would expect the algorithm to converge to different solutions,
depending on the initial input to the algorithm. For example, Fig. 6
shows two functions having the same Fourier modulus. In a com-
puter experiment using the iterative reconstruction algorithm on
the functions’ Fourier modulus, it converged to one of the solu-
tions in about half of the trials and converged to the other solution
in the other half of the trials, depending on the random number se-
quences used as the initial input to the algorithm.

For the problem in two or more dimensions, it appears that the
solution is usually unique. Considering sampled functions defined
on a rectangular grid of points, Bruck and Sodin* showed that the
existence of additional solutions is equivalent to the factorability of
a polynomial representation of the Fourier transform. Since a
polynomial of one variable of degree M can always be factored into
M prime factors, there are 2™ solutions in the one-dimensional
case. Once again, only some of the “‘solutions’ may he non-

negative. On the other hand, polynomials of two or more variables
having arbitrary cocfficients arc only rarcly factorable; conseqguent-
ly, the two-dimensional problem is usually unique. Attempis have
also been made to extend this concept 1o continuous, as opposed to
discrete, functions. ™ Although it is always possible to make up ex-
amples in two dimensions that are not unigue.' it appears to be
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true that for two-dimensional functions drawn from the real world,
the solution is usually unique. The general uniqueness of the two-
dimensional case is indicated by experimental reconstruction results
using the iterative algorithm.3® Furthermore, noise in the Fourier
modulus data has had the effect of adding noise to the
reconstructed function rather than causing the algorithm to con-
verge 1o a radically different solution.?’

3.2.2. Astronomical reconstruction

The problem of reconstructing a two-dimensional nonnegative
function from the modulus of its Fourier transform arises in
astronomy. Due to atmospheric turbulence, the resolution at-
tainable from large optical telescopes on earth is only about one
second of arc, many times worse than the diffraction limit imposed
by the diameter of the telescope aperture. For a five-meter
telescope aperture, the diffraction-limited resolution would be
about 0.02 seconds of arc—fifty times finer. Despite atmospheric
turbulence, it is possible to measure the modulus of the Fourier
transform of a space object out to the diffraction limit of the
telescope using interferometric techniques. 384! The autocorrelation
of the object can be computed from the Fourier modulus, allowing
the diameter of the object to be determined. However, unless the
Fourier transform phase is also measured, it was previously not
possible to determine the object itself, except for some special
cases. Previous attempts 10 solve this problem had not proven to be
practical for complicated two-dimensional objects.

The problem of reconstructing an object from interferometer
data can be solved by the iterative method.?2:3¢ The Fourier-
domain constraint is that the Fourier modulus equal the Fourier
modulus measured by an interferometer, and the function-domain
constraint is that the object function be nonnegative. Figure 7
shows an example. Fig. 7(a) shows a computer-synthesized object
used for the experiment—a sun-like disk having *‘solar flares'* and
bright and dark *‘sunspots.’’ The modulus of its Fourier transform
is shown in Fig. 7(b). Figure 7(c) shows a square of random
numbers used as the initial input for the iterative algorithm. Figures
7(d), 7(e), and 7(f) show the reconstruction results after 20, 230,
and 600 iterations, respectively. Figure 7(g) shows the initial input
for a second trial, and the reconstruction results after 2 and 215
iterations are shown in Figs. 7(h) and 7(i), respectively. Comparing
Figs. 7(f) and 7(i) with the original object in Fig. 7(a), one sees that
for both trials, the reconstructed images match the original object
very closely. Note that inverted solutions such as Fig. 7(f) are per-
mitted for this problem since the modulus of the Fourier transform
of f(-x) equals the modulus of the Fourier transform of f(x) for
real-valued f(x). Other successful reconstruction experiments have
been performed on data simulated to have the types of noise pres-
ent in stellar speckle interferometry,*® and it appears that under
realistic levels of photon noise for fairly bright objects, diffraction-
limited images can be reconstructed.?” Initial expements have also
been carried out on data from telescopes.*?

3.2.3. Pupil reconstruction and synthesis

Another case in which one may want to reconstruct a two-
dimensional nonnegative function from its Fourier modulus is in
pupil function determination. In a diffraction-limited optical
system, the point-spread function is the squared Fourier modulus
of the system’s pupil function. Equivalently, the optical transfer
function is the autocorrelation of the pupil function.* Given the
point-spread function at a given location in an image plane. one
could use the iterative algorithm to retricve the corresponding pupil
function, in a way that is mathematically equivalent to the
astronomy problem. Turning this problem around, one could use
the iterative algorithm to synthesize (design) a pupil function that
would yield a given, desired point-spread function while possibly
satistying other desirable constraints as well.

J.3. Finite extent—measurement over part of an aperture
In a number of reconstruction problems, there 1v a function of

Ol Y —— > Y

Fig. 7. Reconstruction of a nonnegative function from its Fourier
modulus. (a) Test object; (b) modulus of its Fourier transform; (c) ini-
tial estimate of the object (first test); (d)-(f) reconstruction results
—number of iterations: (d) 20, (e} 230, (f) 600; (g) initial estimate of
the object (second test); (h)-(i) reconstruction results—number of
iterations: (h) 2, (i) 215.

known finite extent (or support) and one wishes to reconstruct the
function with resolution appropriate to an aperture in the Fourier
domain more complete than the one over which measurements were
actually taken. In some cases, the desired aperture is simply larger
than the aperture over which measurements were taken, and <o one
wishes to extrapolate the function’s Fourier transform, i.e., 1o ob-
tain superresolution of the function. In other cases, one¢ has made
measurements over a partially filled aperture, in which case one
wishes to interpolate the Fourier transform of the function, and
thereby obtain an improved impulse response in the function do-
main,

1.3.1. Extrapolation or superresolution

The error-reduction algorithm was first applied to the extrapolation
(or superresolution) problem by Gerchberg.** Much has been writ-
ten about the iterative algorithm, specifically the error-reduction
algorithm, as it relates to this problem, including various ways of
understanding the algorithm (see the end of Sec. 2) and proofs of
convergence, 012133648 £or thig particular problem, the nature of
the constraints makes 1t possible to implement the algorithm by a
feedback optical processor®¥-*? taking on the order of 10 ¥ seconds
per iteration even for the two-dimensional case. Marks and Smith
describe these matters in detail clsewhere in this volume.

X.3.2. Interpolation

In tomographic imaging systems, many projections of the object
are measured, each projection vielding information about a shee
through the Fourier transform of the object. When measurements
over only a limited cone of angles are made, the effective aperture
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in the Fourier domain has gaps, and the impulse response of the
system is highly irregular. In applying the iterative algorithm to this
problem,*"-32 the function-domain constraint is the finite extent
and nonnegativity of the object, and the Fourier domain constraint
is that the Fourier transform equal the measured Fourier transform
over the measurement aperture.

A problem similar to the tomography problem arises in radio
astronomy. The radio sky brightness map is a two-dimensional
real, nonnegative function which is the Fourier transform of the
complex visibility function. The visibility function is measured by
radio interferometry, and in the case of long-baseline in-
terferometry, the visibility function is measured only over a limited
set of *“‘tracks” in the Fourier domain, resulting in a partially-filled
effective aperture. The error-reduction algorithm has been used to
obtain improved maps by, in effect, interpolating the visibility
function to fili in the area between the tracks.*? For this problem,
the constraints on the brightness map are that it be nonnegative and
be zero outside the known field of view. In the visibility plane, the
constraint is that the complex visiblity function equal the measured
value within the area of the tracks.

3.4. Modulus—quantized values

As mentioned earlier in connection with spectrum shaping, in com-
puter holography one may wish to encode the Fourier transform of
an image as a computer-generated hologram, but some types of
computer-generated holograms can encode only certain quantized
complex values. The kinoform example discussed earlier is a special
type of quantization. A more general example is the Lohmann
hologram,** for which the modulus and phase of a complex sample
are determined by the area and relative position, respectively, of an
aperture within a sampling cell. The number of allowable quantized
values 18 determined by the number of resolution elements, of the
recording device used to tabricate the hologram, used to form one
cell. For this synthesis problem, the function-domain constraint is
that the modulus of the function equal the desired image modulus
and the Fourier-domain constraint is that the complex Fourier
coefficients fall on a prescribed set of quantized values. Ex-
periments have shown that synthesizing such a Fourier transform
pair is possible using the iterative algorithm.**” For example, Fig.
8(a) <hows a simulation of an image produced by a Lohmann
hologram having only four modulus and four phase gquantization
levels when the image was random phase « Jed. Figure 8(b) shows
the image after 13 iterations, a considerable improvement. This
problem is one of a more general class of problems regarding the
transmission of ¢coded data.

3.5. Finite extent—phase

Finallv, the iterative algorithm has been used to reconstruct the
modulus of a band-limited signal from its phase.*®*” Or, looking at
it in another way, given that a function has finite extent and given
the phase of its Fourier transform, reconstruct the modulus of ity
Fourier transtorm. For this application, it has been shown that for
a wide class of conditions the solution is unique. *¢ This application
will be discussed further in Sec. 4.

4. ALGORITHM CONVERGENCE AND
ACCELERATED ALGORITHMS

A« mentioned in Sec. 2, the basic iterative algorithm depicted in
Fig. 1, referred to as the error-reduction algorithm, has been shown
to comverge for some applications. In this section, the convergence
is proven for all applications. In addition, modified algorithms that
often converge much faster than the error-reduction algorithm are
discussed.

4.1. Convergence of the error-reduction algorithm

For the error-reduction algorithm, the mean-squared error can be
denined in general by Fq. (7) or Eqg. (R). It is a normalized version
of the mtegral over the square of the amount by which the com-
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(b)

Fig. 8. Computer-simulated images from hologram —with tour
magnitude and four phase quantized levels. (a) Object random
phased coded; (b) after 13 iterations of the iterative method.

puted function (or the computed Fourier transtorm) violates the
constraints in the appropriate domuin. When the mean-squared er
ror is zero, then a Fourier transtorm pair has been tound that
satisfies all the constraints in both domains.

Consider again the steps in the crror-reduction algonthm
described in Sec. 2. The k!N iteration starts with an estimate JUYAY]
that satisfies the function-domain constraints. For any coordinate,
x, the complex values that gex) can have that satsfy the tunction-
domain constraints form some set of points in phasor space. For
example, if the modulus must equal  t(x) . then the et o such
points is a circle of radius  £(x) in phasor space: it the function
must be nonnegative, then the set of such pomnts is the halt ine on
the nonnegative real axis. The function estimate g (v) is Fourier
transformed, vielding Gy (u). The next step in the algorithm s 1o
form Gp(w by changing G (u) by the smallest possible amount that
allows it to satisfy the Fourier-domain constramts. Gy(udis then in-
verse Fourier transformed, vielding gy (x) in the function domain.
In the final step, g . ((x) is formed by changing g (\) by the
smallest amount that allows it to satisfy the tunction-domam con-
straints, Now consider the uanormalized squared error, given by
the numerators in Fgs. (7) and (8). In the Fourier domain, the un-
normalized squared error at the K™ iteration is

x
/ Gy Gytuy T du
x

s
—ra
>
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o
= / [8(x) - g{(x)[2dx ,
-]
where the second line in this equation results from Parseval’s

theorem. The unnormalized squared error in the function domain
at the k! jteration is given by

[~ J

ok = / P8y 4 1(X) - BL(X) | 2dx .
-co

Both g,(x) and g, , |(x) by definition satisfy the function-domain
constraints. Also at any given coordinate x, g, , (x) is the point in
phasor space satisfying the function-domain constraints that is
closest to gy (x). Therefore, for all values of x,

15

Bic 4 1 () - B(x) | = [g(x) - gy (x) |, (16)

where equality holds only if g (x) is just as close in phasor space to
8y (x) as gy , {(x) is. When there is a point in phasor space satisfying
the constraints that is closer to g (x) than gi(x) is, then the left-
hand side of the expression abave is strictly less than the right-hand
side. Therefore, combining Eqs. (14)-(16),

eon S ek an
for a given iteration. From the perfect symmetry of the error-
reduction algorithm, as seen from Fig. i, a similar result holds
when one completes the iteration by satisfying the function-domain
constraints, thereby forming g, , ;(x), and continues the next itera-
tion by Fourier transforming gy , {(x) and causing its transform to
satisfy the Fourier-domain constraints. One then finds that

k.1 S Sk < efy - (18)

Therefore, the unnormalized squared error can only decrease (or at
least not increase) at each iteration. Since the normalized mean-
squared error is simply proportional to the unnormalized squared er-
ror, a similar result holds for the errors defined by Egs. (7) and (8).

While the error-reduction algorithm converges to a solution suf-
ficiently fast for some applications, it is unbearably slow for others.

INPUT Q—L——>

SATISFY
FOURIER
CONSTRAINTS

OUTPUT Q=

Fig. 9. Block diagram of the system for the input-output concept.

algorithm, the input is not necessarily an estimate of the function
or a modification of the output, nor does it have to satisfy the con-
straints; instead, it is viewed as the driving function for the next
output. This viewpoint allows one a great deal of flexibility and in-
ventiveness in selecting the next input and allows the invention of
an algorithm that converges more rapidly to a solution. As will be
seen later, the “‘input-output algorithm’’ actually comprises a few
different algorithms, all of which are based on the input-output
point-of-view.

How the input should be changed in order to drive the output to
satisfy the constraints depends on the particular problem at hand.
The analysis given in the appendix for a specific application can be
generalized as follows. Consider what happens when an arbitrary
change is made in the input, Suppose that at the k! iteration the in-

PUE W

In most cases, the error is reduced rapidly for the first few itera- put g, (x) results in the output g; (x). Further, suppose that the input
tions, and then much more slowly for later iterations. is then changed by adding Ag(x):
4.2. Input-output algorithms By 4 1(X) = g,(0) + Ag(x) . 19)
Resulting from an investigation into the problem of the slow con-
vergence of the er.ror-reducuon algorithm, a new and faster- Then one would expect the new output resulting from g, , {(x) to
converging algorithm was developed, the input-output be of the form 4
algorithm. %%38.7.36.42 The input-output algorithm differs from the ]
error-reduction algorithm only in the function-domain operation. E
The first three operations—Fourier transforming g(x), satisfying Bk 4 1(X) = Br(x) + adg(x) + additional noise. (20 :
Fourier domain constraints, and inverse Fourier transforming the
result—are the same for both algorithms. Those three operations,
if grouped together as shown in Fig. 9, can be considered as a That is, the expected (or statistical mean) value of the change of the
nonlinear system with an input g(x) and an output g’(x). A prop- output, due to the change Ag(x) of the input, is adg(x}), a constant 1
erty of this system is that its output is always a function having a times the change of the input. The system shown in Fig. 9 is not L
Fourier transforin that satisfies the Fourier-domain constraints. linear; nevertheless, small changes of the input tend to result in .
Therefore, if the output also satisfies the function-domain con- similar changes of the output. The expected value of the change of -0
straints, then all the constraints are satisfied and it is a sotution to the output can be predicted, but its actual value cannot be “
the problem. It is then necessary to determine how to manipulate predicted since it has a non-zero variance. In the equation above, ")
the input in such a way as to force the output to satisfy the this lack of predictability is indicated by the ‘‘additional noise" 4
function-domain constraints. term. The constant o depends on the statistics of Gy(u) and F(u) 4
For the error-reduction algorithm, the next input g(x) is chosen and on the Fourier-domain constraints. N
to be the current best estimate of the function satisfying the If the output g{(x) does not satisfy the function-domain con- -
function-domain constraints. However, for the input-output straints and if gg(x) + Agy(x) does, then one might try to drive the - :3
.: j“
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output to satisfy the constraints by changing the input in such a
way as to cause the output to change by Ag4(x). Accordin,  the
equation above, the change of the input that will, on the average,
cause a change Ag(x) of the output is

Ag(x) = o’lagy(x) . 1
Thus a logical choice for the new input is
Bk + 100 = 8 (x) + Bagy(x), (22)

where 3 is a constant ideally equal to a’!, and where Agy(x) isa
function such that gi(x) + Agy(x) satisfies the function-domain
constraints. If o is unknown, then a value of § only approximately
equal to o”! will usually work nearly as well. The use of too small a
value of 8 in Eq. (22) will only cause the algorithm to converge
more slowly. The noise-like terms in Eq. (20) are kept to a
minimum by minimizing |3Ag4(x)!.

As mentioned earlier, for the input-output algorithm g (x) is not
necessarily an estimate of the function; it is instead the driving
function for the next output. Therefore, it does not matter whether
its Fourier transform, Gy(u), satisfies the Fourier-domain con-
straints. Consequently, for the input-output algorithm, the mean-
squared error, Ef:. is unimportant; Ef) is the meaningful quality
criterion. When computing E, for the input-output algorithm, the
8y + 1(x) that one should use in the integrand of Eq. (8) is the one
determined by the error-reduction algorithmn rather than the one
computed by the input-output algorithm. That is, E should still be
a measure of the amount by which the output, gy(x), violates the
constraints.

Another interesting property of the system shown in Fig. 9 is that
if an output g’ (x) is used as an input, then its output will be itself.
Since the Fourier transform of g’ (x) already satisfies the Fourier-
domain constraints, g'(x) is unaffectd as 1t goes through the
system. Therefore, no matter what input actually resulted in the
output g’(x), the output g '(x) can always be considered to have
resulted from itself as an input. From this point of view, another
logical choice for the new input is )

By 4 1(X) = gy{x) + Bagy(x) 23)

Note that if 3 = 1 in Eq. (23), then this version of the input-
output algorithm reduces to the error-reduction algorithm. Since
the optimum value of 3 is usually not unity, the error-reduction
algorithm can be looked on as a suboptimal subset of one version
of the more general input-output algorithm. Depending on the
problem being solved, other variations in Egs. (22) and (23) may be
successful ways for choosing the next input.

In order to implement the input-output algorithm using Eq. (22)
or (23), one chooses Ag4(x) according to the function-domain con-
straints. In general, a logical choice is the smallest value of Agy(x)
for which gy (x) + Agg(x) satisfies the function-domain constraints.
At those values of x for which gy(x) already satisfies the function-
domain constraints, one would set Agy(x) = 0. At those values of x
for which gy (x) violates the function-domain constraints, examples
of logical choices of Agy(x) for various applications are as follows.
For the astronomy problem and other applications requiring the
function to be nonnegative, choose Agy(x) = -gy(x) where gl"(x) is
negative. For applications requiring the function to be of finite ex-
tent, choose Agy(x) = -g;(x) for x outside the known region of
support. For applications requiring the function to have modulus
equal to f(x) , choose

gy (x)
Agg(x) = f(x) ——— - gylx). (29)

g(x)’
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In addition to the values of Ag4(x) given above, there are other
choices that are successful when used in Eqgs. (22) and (23). Any
Agy(x) that moves g’(x) in the general direction of satisfying the
function-domain constraints will usually result in an algorithm that
works; suboptimum choices of Ag4(x) and of 8 in Eq. (22) or Eq.
(23) result in algorithms that converye less rapidly than the op-
timum. Two examples of other algorithms that converge more
rapidly than the ‘‘logical”’ ones described in the preceding
paragraph are as follows. For applications requiring the function to
have modulus equal to f(x) , it was noticed that the difference in
phase between 8, (x) and gy (x) tends to have the same sign as the
change of phase of g, (x) from one iteration to the next. In order to
anticipate the direction that the phase is changing, one could
choose a Agy(x) that tends to rotarr "he phase angle of the new
input toward that of the last output. That is, a good choice for the
desired change of the output is

gy (x)
Agg(x) = | f(x) ——— - gx(x)
18k (x)

8L(X) 8,(0)
+ [ ) — x| —~ ] (25)
Bi(x): gy(x)

in which the first component boosts (or shrinks) the magnitude of
the output to match 'f(x) ' and the second component rotates the
phase angle of the input toward the phase angle of the output. For
the astronomy problem, it was found that a particularly successful
algorithm was to use Eq. (23) at those points where the constraints
were satisfied and use Eq. (22) at those points where the constraints
were violated, i.e.,

g (x), where constraints satisfied
g (X)) = (26)
gi(x) - Bg(x), where constraints violated

Furthermore, it was found that even faster convergence can be ob-
tained by alternating between the above equation and the error-
reduction algorithm every few iterations.

Unlike the error-reduction algorithm, the input-output algorithm
is not guaranteed to converge; in fact the error may even increase
for some of the iterations. However, the input-output algorithm is
much less prone to stagnation and therefore in practice converges
much faster than the error-reduction algorithm. In some instances
during the input-output iterations, E, may even increase although
the visual appearance of the image improves. This behavior, which
is poorly understood, is described further in Ref. 59.

From the paragraphs above, it is seen that the ‘‘input-output
algorithm’’ is really a family of algorithms. The input-output ap-
proach is one that can lead to a number of different algorithms
based on the manner in which the nonlinear system of Fig. 9
behaves. One would hope that the principles of control theory and
possibly other disciplines could be used to shed further light on this
system and help to arrive at algorithms with still more rapid con-
vergence.

It should also be noted that, unlike the error-reduction
algorithm, the input-output algorithm does not treat the two do-
mains in a symmetric manner. By reversing the roles of the two
domains, one can arrive at a different and possibly more advan-
tageous algorithm.

4.3. Relaxation-parameter algorithm

A second method of improved convergence is the usc of a relaxa-
tion parameter. In solving the problem of reconstructing the
magnitude of a band-limited function from its phase (or,
equivalently, reconstructing a tunction of finite extent from the
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Fig. 10. Block diagram of the error-reduction algorithm moditied to
include a relaxation step.

phase of its Fourier transform), Oppenheim, Hayes, and Lim®’
modified the error-reduction algorithm (Fig. 1) by adding a relaxa-
tion step, as shown in Fig. 10. Here the band-limited function is
taken to be in the Fourier domain. The function g(x) then must be
of finite extent according to the bandwidth of the Fourier-domain
function. In the relaxation step, gy (x) is formed from gx(x) accord-
ing to

g (x) = (1 - mgy 1 (X) + ngp(x), 27N

and then the new estimate gy , 1(x) is formed from gy (x) by making
it satisfy the function-domain constraints. The parameter ny» which
is a constant that may vary from one iteration to the next, is the
relaxation parameter. For g, = 1, gg(x) = gy(x) and this reduces to
the error-reduction approach. For 5, = 0, gy/(x) = Bk (x), that is,
the result from the previous iteration is used. Other values of %
give a linear combination of gy 1(x) and gx(x). For the reconstruc-
tion of a function of finite extent from the phase of its Fourier
transform or from a segment of its Fourier transform (i.e., the
superresolution problem), if gj(x) and gj(x) both satisfy the
Fourier-domain constraint, then the linear combination ng[(x) +
(1 - n)g3(x) also satisfies the constraint in the Fourier domain. It
follows from this that gi(x) given by Eq. (27) also satisfies the
Fourier-domain constraint. In those cases, it can be shown that the
algorithm converges for 0 < . =< 1. However, for other sets of
constraints, for example, given tt¢ modulus of the Fourier trans-
form, g/(x) given by the equation above does not generally satisfy
the Fourier-domain constraints and so the relaxation method does
not strictly apply.

The optimum value of 7, can be determined as follows. Define
the function-domain squared error after the relaxation step as

el = / gr(x) *dx, (28)

v

where the region of integration, v, is the region over which the
functicn is known to be zero. Setting equal to zero the derivative of
e;’, with respect to n,, and solving for ., one finds the optimum
value of 7, to be given by

-Re / g(_l(x)lgk(x) - S}Z.](X)]' dx

" (29)

v

YT

R Ae JhEE e B i J0dte Bt b e e e 4

The computation of the relaxation parameter by Eq. (29) takes
much less time than the computation of one (fast) Fourier
transform, and so it does not significantly increase the total com-
putation time of a single iteration.

Use of the relaxation step for the problem of reconstructing a
band-limited function from its phase resulted in an order of
magnitude improvement in the speed of convergence of the
algorithm over that of the error-reduction algorithm.*’

The relaxation step described above incorporates the optimum
combination of the current output with the previous output. It is
also possible to extend this concept to include a number of previous
outputs,®” which may result in still more rapid convergence.

It should be noted that the majority of the work referenced in
Sec. 3 made use of only the error-reduction algorithm. Improved
speed of convergence could be expected if one of the two ac-
celerated algorithms discussed above were employed.

5. SUMMARY AND COMMENTS

The iterative error-reduction algorithm, an extension of the
Gerchberg-Saxton algorithm to include various types of con-
straints, has been found to be capable of solving a wide range of
difficult problems in optics and other fields. It can be applied to the
reconstruction of a function (an object, wavefront, signal, etc.)
when only partial information is available in each of two domains,
or to the synthesis of a function (wavefront, signal, etc.) having
desired properties in each of two domains. The iterative algorithm
is reasonably fast for most applications, since the major computa-
tional burden, two Fourier transforms per iteration, can be ac-
complished using the fast Fourier transform (FFT) algorithm. The
iterative algorithm has been shown to outperform alternative
methods of solving these classes of problems both because of its
speed and its tolerance of noise.*¥ For some applications, a large
number of iterations is required tor convergence of the error-
reduction algorithm. This situation can be remedied by using an
algorithm with accelerated convergence, such as the input-output
algorithm or an algorithm employing a relaxation step.

The iterative algorithm has been in use for only a few years, yet it
has already found numerous applications; and methods of improv-
ing the algorithm have been devised. Nevertheless, it is safe to
predict that it will be used in the future to solve new problems not
discussed here, and it is hoped that further improvements of the
algorithm will be discovered.

POSTSCRIPT

As this book goes to print, further developments relating to the
iterative algorithm are occurring at a rapid pace. It has been un-
covered that an algorithm equivalent to Gerchberg's*® error-
reduction algorithm for extrapolation was proposed by Ville™ in
1956, although approached from a different point of view. Rela-
tionships between (he error-reduction algorithm and gradient
search methods have been discovered®*1-%= and uncovered.®* And
further work on various applications is being reported.®-*?

APPENDIX: ANALYSIS OF THE INPUT-OUTPUT
SYSTEM

Consider the synthesis problem for kinoforms, for which the
Fourier modulus is set equal to a constant. Suppose that the input
g(x) to a kinoform system results in the output g '(x). The kinoform
has a transmittance G'(u) = K explio(u)], where o(u) is the phase
of G(u) = G(u) explio(u)] = # [g(x)], and K is a constant, The
resulting image is g°(x) = # 'lG (u)]. Now consider what happens
when a change Ag(x) is made in the input. As illustrated in the
phasor diagrams in Fig. Al, the change Jg(x) of the inputl causes a
change AG(u) of its Fourier transform, which causes a change
AG (u) of the kinoform and a corresponding change Ag (x)

F AG (u)] of the output image. The goal here is to determine
the relationship between the change Ag'(x) of the output and the
change Ag(x) of the input. Figure A2 shows the relationship be-
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Fig. A1. A change Ag of the input results in a change AG’ of the
kinotorm and a change of Ag’ of the output.

Fig. A2. Relationship between AG', the change of the kinoform,
and two components of AG, the Fourier transform of the change of
the input.

tween AG’(u) and two orthogonal components of AG(u). By
similar triangles, for AG' < < ‘G|,

AG'(u) = AG‘(u)-—K—, (A1)
'G(u)

where the two orthogonal components of AG(u) are

AGT(u) = AG(u) cos B(u) el®(v) (A2)

parallef to G(u), and

AGY(u) = AG(u) sin B(u) elletw) + 7/2] (A3)

orthogonal to G(u); and

AG() = AGT(u) + AGYu) = AG) ellow) + 3wl (Ad)

where 3(u) is the angle between AG(u) and G(u). Only one of the
two orthogonal components of AG(u), namely AG!(u), contributes
to AG ' (u).
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In order to compute the expected change of the output,
E(Ag’(x)], treat the phase angles 8(u) and the magnitudes |G(u)| as
random variables. Inserting | AG(u)| from Eq. (A4) into Eq. (A3),
one obtains

AGY(u) = AG(u) e-ilo(W) + 8] gin (y) eldl) ¢ix/2

= AG(u)[sin? 8(u) + isin B(u) cos B(u)] . (AS)

For 8(u) uniformly distributed over {0, 2x],!® the expected value of
AGY(u) is

E[AGY(u)] = AG(u) (% + i-o) = —AG(). (A6)

LE
2

Therefore, the expected value of the change of the output is, using
Eqs. (A1) and (A6) and assuming that the magnitudes |G(u)! are
identically distributed random variables'? independent of 3(u),

E[Ag'(x)] = E [Q(AG')]

= F[E(AG")] = F|EWQAGHE _(_';—>

< g[im] E <_K_) ; LAg(x>E(_*<_>.
2 iG| 2 G

That is, the expected change of the output is a times the change of
the input, giving us the second term in Eq. (20), where a =
(I/2)E(K/:G'). After a few iterations, G(u) will not differ
greatly from K; then o« = 1/2.

Sin:tiilarly. the variance of the change of the output ¢an be shown
to be-

(A7)

E[ Ag'(x) ?] - E[ag'(0)] ?

() ()}

oo

Ag(x') “dx,
(AB)

where A is the area of the image. That is, the variance of the change
of the output Ag’(x) at any given x is proportional to the integrated
squared change of the entire input. The predictability of Ag ' (x),
and the degree of control with which one can manipulate it,
decreases as one makes larger changes of the input. The difference
between the actual change of the output and the expected change of
the output given by Eq. (A7) is what is meant by the additional
noise term in Eq. (20). If, after a few iterations, G(u) = K, then
in Eq. (A8) the factor (1/4)12E(K*/ G ) - [E(K- G )% = 1.4.
Equations (A7) and (A8) are a justification for the input-output
concept: small changes of the input result in similar changes of the
output, and so the output can be driven to satisfy the constraints by
appropriate changes of the input, asin Egs. (22) and (23),
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Reconstruction of objects having latent reference points

J. R. Fienup
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A simple recursive algorithm is proposed for reconstructing certain classes of two-dimensional objects from their
autocorrelation functions (or equivalently from the modulus of their Fourier transforms—the phase-retrieval prob-
lem). The solution is shown to be unique in some cases. The objects contain reference points not satisfying the
holography condition but satisfying weaker conditions. Included are objects described by Fiddy et al. {Opt. Lett.
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8, 96 (1983)] satisfying Eisenstein’s thorem.

INTRODUCTION

In a number of disciplines, including astronomy, x-ray crys-
tallography, electron microscopy, and wave-front sensing, one
encounters the phase-retrieval problem. One wishes to
reconstruct f(m, n), an object function, from |F(p, ¢)|, the
modulus of its Fourier transform, where

F(p.q) = |F(p, ¢)|expi¥(p, ¢)] = F[f(m, n)]

M-1N-1
= ¥ ¥ fim,n)exp(=i2n(mp/M + ng/N)], (1)

m=0 n=0
wherem,p=0,1,...,M—1landn,¢=0,1,...,N—1. The
discrete transform is employed here since in practice one deals
with sampled data in a computer. The problem of recon-
structing the object from its Fourier modulus is equivalent to
reconstructing the Fourier phase, ¥(p, ¢), from the Fourier
modulus; since once one has the phase as well as the modulus,
one can easily compute f(m, n) by the inverse (discrete)
Fourier transform. ry(m, n), the (aperiodic) autocorrelation
of f(m, n), is given by!

M-1N-1 .
rifm,n)= ¥ ¥ fU,Rf*G —m,k —n) (2)

1=0 k=0

= F-|F(p. 9|2, 3

where the asterisk denotes complex conjugate. Note that the
autocorrelation is Hermitian: ry(—~m, —n) = r/*(m, n). Note
also that in order to avoid aliasing during the computation of
|F(p.)]?, it is necessary to have f(m,n) =0for M/2 < m <
M — 1 and for N/2 £ n £ N - 1; this will be assumed
throughout this paper. Then there is no difference between
the periodic (cyclic) and aperiodic autocorrelation. (For x-ray
crystallography this is usually not the case, and the results of
this paper do not apply.) Since the autocorrelation function
is easily computed from the Fourier modulus by Eq. (3), the
phase-retrieval problem is equivalent to reconstructing an
object from its autocorrelation function,

Several phase-retrieval algorithms have been proposed, all
of them requiring some additional measurements or con-
straints on the solution. Examples include a reference point
at least one object diameter from the object? (giving rise to the
holography condition?®), a second intensity measurement in
another plane?” (in electron microscopy or wave-front sens-

0030-3941/83/111421-06801.00

ing), nonnegativity and limited spatial extent®-8 (in astrono-
my), atomic models? (in x-ray crystallography), and objects
consisting of collections of points having nonredundant
spacings.!0

Here it is pertinent to review the case of holography.
Suppose that f(m, n) consists of an object of interest, g(m, n),
plus an unresolved (delta-function-like) point, referred to as
the reference point, i.e.,

f(m,n) = Aé(m — mg,n — no) + g(m, n), (4)

where d(m, n) is a two-dimensional (2-D) Kronecker deita
function. Then the autocorrelation can be written as the sum
of four terms,

re(m,n) = |A|26(m, n) + ry(m, n) + Ag*(my—m,ng~n)
+ A*g(m + my, n + ng), (5)

the final term of which is the cross-correlation of the reference
point with the object of interest and is simply proportional to
a translate of the object of interest. If the distance from the
reference point to the object of interest exceeds the diameter
of the object of interest, then the fourth term in Eq. (5) is
nonoverlapping with the other terms, and the object of interest
is reconstructed by simple inspection of the autocorrelation.
Then the holography condition is satisfied.2* If the ampli-
tude and position of the reference point are unknown (except
that the reference point satisfies the holographyv condition).
then the object can be reconstructed only to within a complex
factor A* and to within a translation, and there would be a
twofold ambiguity as to whether the object is given by the
fourth term or the third term (the conjugate image) of Eq.
(5).

In this paper we describe an algorithm for reconstructing
certain objects having reference points that do not satisfy the
holography condition. For these cases the reference points
may be referred to as latent reference points, because thev do
not immediately yield the object as would a holographic ref-
erence point; rather, a degree of development is required be-
fore their usefulness emerges.

In Section 2 the question of the uniqueness of the solution
is reviewed. In Section 3 the new reconstruction algorithm
is described as it is applied to three different classes of objects.
Additional comments on the reconstruction algorithm are
included in Section 4.
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2. UNIQUENESS OF THE SOLUTION

When one measures only the Fourier modulus, then the
uniqueness of the solution is a central question. One of course
always has the twofold (180° rotated or conjugate image)
ambiguity since | 7 [f(m.n)|| = | #|f*(=m. —n)]|; and trans-
lations of f(m, n) and the multiplication of f(m, n) by a con-
stant phase factor exp(ifl) (where # is a real constant) also have
no effect on |F(p. g)|. If these are the only ambiguities, then
we consider the solution of the phase-retrieval problem to be
unique.

Bruck and Sodin!! considered objects consisting of a rec-
tangular grid of delta functions having various complex am-
plitudes (or equivalently, a 2-D sequence). which have Fourier
transforms that can be expressed as polynomials. These are
the types of objects assumed by Eqgs. (1) and (2). and we refer
to such objects as sampled objects. They showed that, for
sampled objects, a lack of uniqueness of the solution to the
phase-retrieval problem is equivalent to the factorability of
the polynomial, and therefore one-dimensional (1-D) objects
of length L have a 2-~1-fold ambiguity.!! This result corre-
sponds to the analogous theory for 1-D continuous functions.!2
On the other hand, polynomials of two (or more) variables are
known to be only rarely factorable (i.e., they are usually irre-
ducible). Consequently, for 2-D sampled objects the solution
to the phase-retrieval problem is usually unique. An analo-
gous theory for 2-D continuous functions is not yet avail-
able.

Uniqueness Condition Due to Eisenstein’s Theorem
Although most 2-D sampled objects are, as discussed above,
uniquely related to the modulus of their Fourier transforms,
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contains five columns and four rows of points. The object
must also be nonzero both at point A and at point B in the
lower left corner of the rectangle. Points A and B are referred
to as the reference points, and they do not satisfy the holog-
raphy condition. If these conditions are satisfied, then the
Fourier transform of the object satisfies Eisenstein's theorem,
making it an irreducible 2-D polynomial and guaranteeing
that the solution to the phase retrieval problem is unique.
They demonstrated the power of these conditions by recon-
struction experiments using the input-output iterative Fou-
rier-transform algorithm.%* First, they performed a recon-
struction experiment on the Fourier modulus of a particular
object that did not bave a reference point A. After 25() iter-
ations, a poor reconstruction resulted. But when a new object
was formed by adding a reference point A off its corner making
it satisfy the conditions, then a good reconstruction was oh.
tained after only 20 iterations.!* Note that this does not prove
that the original object {without the point A) was nonunique:
the failure of the iterative reconstruction algorithm may only
be an indication of local minima in the error function. Infact.
when the reference point A had a small value, a poor recon-
struction was obtained in spite of the fact that irreducibility
(and uniqueness) was ensured. Only when a large value for
A was used did the reconstruction become easier.!” Appar-
ently the use of a large enough value for A also ensures that
there are no local minima.

3. NEW RECONSTRUCTION ALGORITHM

For certain classes of sampled objects having reference points
not satisfying the holography condition, we present a new
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rid, n) = A*g(J, n), n=1,.. K, (6)
riim, K) = A*g(m, K), m=1,...,dJ (7)

Therefore, for m = J and for n = K, one can reconstruct g(m,
n) to within a constant factor A* by simple inspection of r;(m,
n). Ineffect, the holography condition is in force for the row
and column opposite reference point A, and that row and that
column are reconstructed bv using reference point A.

The value of A can be obtained as follows: From Eq. (2),
it is seen that there is only one nonzero term in the summation
for the upper left corner point in the autocorrelation:

ril=J + 1, K—1)=g(l,K)g*(J, 1) = B*g(1,K). (8)
Also, from Eqgs. (6) and (7),

r(d, 1) = A*g(J, 1) = A*B, 9)
ri{l, K) = A*g(1,K). (10)
Combining Eqgs. (8)~(10) yields ssuming that r/(—J + 1, K

-1 =0,

o DL K)
e -J+1.K-1)

Since without loss of generality we can arbitrarily fix the phase
of any one point in fim, n), we set the phase of A equal to zero;
A is then gi~« .. unambiguously by the positive square root of
Eq. (1. It -;«=J + 1. K — 1) = (. then one can obtain a
similar expression for | A|- using the first nonzero point, rj(m,
K — 1) to theright of ry(~J + 1, K — 1). Since A4 is known,
ti-J.n)and g(m, K) can be determined unambiguously from
Eqs. (6) and (7). Notethat B = glJ, 1) = r/lJ, 1)/A*.

Having the values of the top row and rightmost column of
£(m. n), one can then solve for the leftmost column in the
second step of the algorithm. From Eq. (2), the point of the
autocorrelation just below r((—=J + 1, K — 1) has only two
nonzero terms,

r(=J+ 1, K~=2)=g(1,Kig*(J,2) + g(l, K = 1)g*(J, 1}.

|A] (11)

(12)
Solving,
LK = D={rp(=J+ 1,K = 2} = g(1. Kig*{J. 2)]/B*,
£13)

where ¢(-J, 1) = B.  Since all the quantities of the right-hand
side of Eq. (13) are known and B = 0, one can unambiguously
compute g(1, K = 1). Similarly, the next lower point in the
autocorrelation is given by

rit=J + 1,K = 3) = g(1,LK)g*(J.}) + g(1,K — 1)g*(J, 2)
+gl.K = 2)g*(J 1) (14)

Since all the quantities in this linear equation are known ex-
S cept for gt1, K — 2), and since £(-J, 1) = 0, vne can solve un-
== ambiguously for g(1, K ~ 2). In a similar fashion, one can
recursively solve for all the values g(1, n) (the first column on
’ the left) using the values of r/(—J + i.n — 1) in this second
step of the reconstruction. In asense the columnm =1 was
solved using the latent reference point B, which required the
solution of column m = .J before it could become effective.
Having the first column on the left and the first column on
the right of g(m, n), one can then solve for the second column
on the right in the third step, using A as the latent reference
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point. From Eq. (2), the points of the autocorrelation in
column {J — 1) are given by

K
rild =1,n)=gJ=1,mA*+ ¥ g, k)g*(. k —n).

k=n+1
(15)

forn=1,...,K —1. Since, foranyn,g(J = 1,n)is the only
unknown in Eq. (15), and since A = 0,g(J — 1, n) is uniquely
determined from Eq. (15). Thus the values of g(m, n) in
column (J — 1) are reconstructed using the values in column
(J = 1) of the autocorrelation.

The reconstruction algorithm continues in the manner
described above. In the fourth step, one can recursively solve
for £(2, n) using the latent reference point B and the values
ofrf(=J+2,n—-1),n=K-1,K-2,...,2,1. Inthefifth
step, one can solve for g(J — 2, n) using the latent reference
point A and the valuesof ry(J - 2,n),n=1,...,K -1, One
continues the procedure until all the columns of g{m. n) are
reconstructed, giving a complete and unambiguous recon-
struction of g(m, n), and therefore of f(m, n}).

If g(1, K) > 0, then one can alternatively use that point as
B and perform the reconstruction as described above. but
reversing the roles of the rows and columns.

It was recently noted that Eisenstein's theorem allows for
the rectangular region of support (see Fig. 1) to be extended
over {in the same column as) point A. However, in that case.
there is no simple recursive algorithm for reconstructing the
object.

B. Support Uniqgueness for Fiddy-Brames-Dainty
Objects

In the reconstruction method described above, it was im-
plicitly assumed that the support of the object function was
known. However, as will be shown by what follows., such an
assumption is not necessary, since an FBD object can be
shown to be an FBD object from its autocorrelation. In order
to use theorems!" relating to reconstructing the support of an
object from the support of its autocorrelation function. during
the discussion of the object and autocorrelation supports we
assume that the object function is real and nonnegative. (It
might happen that what follows may, with appropriate mod-
ifications, also be true for complex-valued objects: but this
would require further development.)

Given only the support of the autocorrelation, one can
usually only put an upper bound on the support of the
object.!”  Such upper bounds, sets that can contain translates
of the supports of all possible solutions, we refer to as locator
sets. One such locator set is the intersection of the autocor-
relation support with a translate of itselt, where the translate
is such that the center of the second autocorrelation support
is within the first autocorrelation support.’  Assuming that
riti=J 4+ 1, K = 1} = 0, and translating the one autocorrelation
support so that it is centered at (—=J + 1. K — 1), one arrives
at the locator set shown in Fig. 2 for the case of the FBD ohject
support shown in Fig. 1th). In addition. since the autocor-
relation is 2J + 1 pixels wide and 2K + 1 pixels high, the object
must be ./ + 1 pixels wide and K + 1 pixels high. Since the
object support must be contained within the locator set shown
in Fig. 2, which is J + 2 pixels wide and K + 2 pixels high. the
object support must include either the lower left point or the
upper right point but not both.  Keeping either one of these
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Fig. 2. Locator set containing all possible solutions, used to show
that the support solution is unique.

K o o 0 0 o
0 L]
© @ ©

Fig. 3.  Alternative case. (a) Object support; (b) autocorrelation
support; 1¢) locator set.

two points and discarding the other, one is left with the sup-
port of the object (or the 180° rotated version—the twofold
ambiguity). Suppose, on the other hand, that r/(—=J + 1, K
— 1) =0. For example, suppose that the object support is that
shown in Fig. 3(a). Then the autocorrelation support is that
shown in Fig. 3(h). A locator set, formed by taking the in-
tersection of this autocorrelation support with one translated
to be centered at the first nonzero point in row (K — 1), is
shown in Fig. 3(¢). As in the case of Figs. 1 and 2, since the
autocorrelation is 2K + 1 pixels high, the object must be K +
1 pixels high, and theretore either the lower right or the upper
left point (but not both) in Fig. 3(c) must be within the object
support.  Suppose we take the lower left point as being within
the object (chovsing the upper right point will result in the
180° rotated solution). Then, since the autocorrelation is 2/
+ 1 pixels wide and therefore the object must be J/ + 1 pixels
wide, the object must he contained within the first J + 1 col-
umns on the left of Fig. 3(¢), which is just the support of the
object as shown in Fig. 3ta). From these examples it can be
seen that, in general. if the object is an FBD object, then its
support can he reconstructed from the autocorrelation func-
tion. from which it is also evident that the object has an FBD
support.

C. Triangular Objects

Other tvpes of objectx, in addition to FBD objects, can be re-
constructed by the recursive method. In this and the next
section the reconstruction of two other classes of objects are
shown. Consider. tor example. objects whose support is
contained in the triangular shape shown in Fig. 4ta),  As-
suming that the object’s support is known a priorr, it has been
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shown that for this particular object shape the boundaries can
be reconstructed in a simple way,!? assuming A, B, (' = 0.
Since the vector spacings between points A and B, B and (',
and C and A are each unique, from the corner points in the
autocorrelation, as shown in Fig. 4(b), we have

r(0, K) = f(0, K)f*(0,0) = CA*, (16a)
r(d, —=K) = f(J, 0)f*(0, K) = BC*, (16h)
r{J,0) = f(J,0)f*(0,0) = BA*. (16¢)

Combining these gives
_r*o, Kir(d, 0)

[Al®
r(J, —K)

Without loss of generality the phase of A can be chosen to be
zero, and then A is given by the positive square root of Eq.
(17). Then we can also compute

B =r(J,0)/A4%, (18a)
C=r(0, K)/A* (18b)

(17

Then the values of the leftmost column of the object are given

by

f0,n) =r(—J,n)/B*, (19)
the values of the bottom row are given by
flm,0) =r(im, —K)/C*, (200

and the values of the diagonal are given by
fim, K=m)=rim,K — m)/A*. 21}

From this point one could determine the remainder of the
object by solving systems of equations,!4 but an easier way

K¢—c=10K)
A=1(0.0) . . . B=1()0
;\ ¢
0 @ J
r(-J,K)=CB* .
f o o 0 0 o o o ¢~rl0K):CA
D N T R LY
L] L] . * . L] L] L] L] » L] L] » L] L] f
®) r/(;.—K)=BC'

Fig. 4. Triangular ~haped obtect tail Object support; chiautocer
relation support. The abject s uniguels Gimong triangular-~haped
salutionsi reconstructed trom s antocorrelation tunction
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Fig. 5. Specific triangular-shaped object. (a) The object; (b) a
second nontriangular-shaped solution: (¢) the common autocorrela-
tion function; (d) the function used to synthesize objects shown in (a)
and (b).

is possible if one cleverly chooses the order in which the
equations are solved. In particular, only one linear equation
with one unknown at a time need be solved, and the solution
at each step is unique, if one solves in the following order. In
a similar manner as was done for the FBD objects, solve for
the points in column m = 1 using B as a latent reference point,
and solve for the points in row n = 1 using C as a latent ref-
erence point. Next solve for the points in column m = 2 using
B as a latent reference point, and solve for the points in row
n = 2 using (' as a latent reference point. This procedure is
continued until all of f(m, nJ is reconstructed. QOther or-
derings for the recursive solution of the equations are also
possible.

The solution given above for the triangular-shaped object
is unique among objects having that support but may not be
unique among all objects. Momentarily restricting f(m, n)
to the case of nonnegative objects, one can use the autocor-
relation support tri-intersection reconstruction for convex
sets!"' to show that there exists a family of object supports that
have autocorrelation supports equal to the one shown in Fig.
4th). One member of that family is the original object support
shown in Fig. 4(a). Another member is an object support
resembling the autocorrelation support shown in Fig. 4(b) but
only half its size. For these latter members there is no simple
recursive reconstruction algorithm as there is for the trian-
gular-shaped object.

Further insights can he obtained by analyzing a simple case.
A case for which there are exactly two different solutions (not
counting 180°-rotated versions) can be obtained by starting
with nonsymmetric functions h(x, v) and hy(x, v) whose
Fourier transtorms are nonfactorable and generating a first
object, which is h(x, v) convolved with h2(x, v), and a second
object, which is hi(x, y) convolved with hu(=x, —y) (i.e., the
cross correlation).’® Two such objects, their common auto-
correlation function, and the h(x, v) = ha(x, v) used to gen-
erate them are shown in Figs. 5(a) through 5(d), respectively.
In this case one obtains the “unique” solution shown in Fig.
Stad it triangular support is assumed. and the "unique ™ solu-
tion shown in Fig. 5(hi if the onlyv other possible support is
assumed.

Since relatively few 2.1 objects have factorable Fourier
transforms, the ambiguous example shown in Fig. 5 is unusual.
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If one started with a random object having the same support
as the object in Fig. 5(b). and if one incorrectly assumed that
the object had the same triangular support as the object in Fig.
5(a), then one would obtain what at first glance would appear
to be a triangular-shaped solution. In the process of calcu-
lating the solution one would use only the points on the pe-
rimeter of the autocorrelation function, with which the “so-
lution” would be consistent. However, on further inspection
one would usually find that the triangular-shaped solution is
inconsistent with the interior points of the autocorrelation
function. Only in the unlikely event that the original object’s
Fourier transform is factorable would the triangular-shaped
solution be completely consistent with the autocorrelation
function. Therefore if the given autocorrelation function
admits to a possible solution by the recursive method, then
one should reconstruct the solution with the assumed support,
then compute its autocorrelation function and compare it with
the given autocorrelation function to determine whether the
assumed support is valid.

D. Another Case

For a final example, consider objects contained within the
support shown in Fig. 6(a). Comparing it with Fig. 1(b), it
would be a FBD object if it were not for the fact that B = 0.
Assuming that the support of the object is known, it can be
reconstructed by the following recursive steps if points A and
B’ # 0 and if either point C* or C” = 0. First f(J,2),...,f(J,
K)and f(2,K),. .., f(J — 1, K) are solved using A as the ref-
erence point. A can be determined from an equation similar
to Egs. (1) and (17). Next C’' = f(1,K — 1), then f(1,K — 2),
..., then f(1, 2) are solved using B’ as the latent reference
point. Next f(J — 1, 1) is solved using " or " as the latent
reference point. Next f(1, 1) is solved using B’ as the latent
reference point. Next f(J —1,2), ..., flf —1,K ~1)are
solved using A as the latent reference point. Then the pattern
repeats: solve for f(2,K — 1),..../(2,2) recursively using B’,
then solve for f(J ~ 2, 1) using (" or C”, then solve for f(2, 1)
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Fig 6. Another case related to FBD objects. 1a) Object support:
thy alternative support reconstriction; () autocorrelation support
The ohject 1s reconstructed from its autocorrelation tunction, with
two sojutions,
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using B’, thensolve for f(J — 2,2),...,f(J =2, K = 1) using
A, etc., until all the columns are solved.

The solution for this object is unique among objects having
support contained within the support shown in Fig. 6(a).
Howcver, another support may also be possible. Ina manner
similar to that used in connection with Figs. 1-3, the possible
support solutions can be narrowed down to those of Fig. 6(a)
and Fig. 6(b), given the autocorrelation support shown in Fig.
6{(c). For the support shown in Fig. 6(b) one can reconstruct
the object unambiguously by solving a proper sequence of
equations using latent reference points A, B, C, C’, and D.
Therefore, given the autocorrelation function whose support
is shown in Fig. 6(c), at most two (and more probably only one)
solutions are possible, and each can be reconstructed using
a simple recursive algorithm depending on the support shown
in either Fig. 6(a) or 6(b).

4. CONCLUSIONS

A simple recursive algorithm has been devised for recon-
structing an object from its autocorrelation function (or its
Fourier modulus). It works for several types of sampled
objects having latent reference points, including those satis-
fying the conditions described by FBD. The manner in which
the algorithm results in a unique solution constitutes a proof
of uniqueness for FBD objects {(but not necessarily for all
objects whose Fourier transforms satisfy Eisenstein’s theo-
rem). One of the principal lessons learned here is that the
detailed shape of the boundary of an object plays a crucial role
in determining the unigqueness of the solution to the phase-
retrieval problem.

One might be able to use this method for continuous objects
(as opposed to inherently sampled objects) if a dense enough
sampling of the autocorrelation is available.”

Since the algorithm involves repeatedly taking differences
and dividing by the values of the latent reference points, it
may he sensitive to noise and may require latent reference
points having large values for an accurate reconstruction.
{This may be relate.i to the fact that a large value of A was
required for a successful reconstruction using the iterative
Fourier-transform algorithm.!*) Not all the (nonsymmetric)
points in the autocorrelation are used by this algorithm: im-
proved accuracy should be expected if the reconstruction al-
gorithm were modified to use also those additional points.
Those additional points may also be used to distinguish
whether assumptions about the support of the object (when
more than one support solution is possible) are valid. For the
hest results one should finish the reconstruction by using the
output of this reconstruction method as the initial input to
the iterative Fourier-transform algorithm.** which finds a
solution that is most consistent with both the measured data
and the a priori constraints.

The reconstruction algorithm proposed here is applicable
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to only a relatively small number of tvpes of objects. How

ever, the approach of caretully selecting the order in which the
equations are solved should be helpful in the more general use
of Dallas's method by limiting the growth of the tree of solu

tions,”
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Appendix C
HOLOGRAPHIC RECONSTRUCTION WITH LATENT REFERENCE POINTS

J.R. Fienup

Presented at the Annual Meeting of the Optical Society of America,
New Orleans, Louisiana, October 1983; Abstract: Journal of the Optical
Society of America 73, 1861 (December 1983).

MHS. Holographic Reconstruction with Latent Reference
Points.®* J. R FIENUP, Environmental Research Institute of
Michigan, P.O. Bux 8618, Ann Arbor, Michigan 48107 - In the image
plane of a Fourier-transform hologram, one finds the autocorrelation
of the object-plane distribution (the object plus a reference pointy,
which includes the autacorrelation of the abject, the crosscorrelation
of the object with the reference point (i.e., the desired image). and the
conjugate image. When the reference point is insufficientlv offset
from the object, then a straightforward reconstruction is frustrated
by the overlap of the desired image with the autocorrelation term
One then must solve the Fourier-phase retrieval problem or eqnal-
ently reconstruct the object -plane distribution from its autocorre.
lation function. For certain cases there is a unique relationship be.
tween the Fourier-plane intensity and the object plane distribution,
even when the reference point i~ close to the object (hence it is only
a latent reference point). Examples of this are ohject plane distr

hutions whose Fourier transforms satisfy Eisenstein's criternion! For
these and certain other tvpes of object-plane distributions, one can
digitally reconstruct the object -plane distribution from its autocor

relation function using a recursive algorithm.  This also constitutes
a proof of the uniqueness of phase retrieval for these types of
object -plane distributions. The algorithm is similar to Dallas’ al-
gorithm except that it involves solving only one linear equation at a
time. It has applications in holography, astronomy, and wave-front
sensing. (13 min.)

* This rescarch ..as supported by the 1S A Force Office of Scientific Ke
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EXPERIMENTAL EVIDENCE OF THE UNIQUENESS
OF PHASE RETRIEVAL FROM INTENSITY DATA

J.R. Fienup
Environmental Research Institute of Michigan
P.O0. Box 8618, Ann Arbor, Michigan 48107, USA

Summarv. An increasing body of theory indicates that the
phase retrieval problem usually has a unique solution for
2-D objects. In this paper experimental reconstruction
results that support the uniqueness theory are shown.

1 INTRODUCTION

In both optical and radio astronomy, sometimes one can accu-
rately obtain the modulus of the Fourier transform (i.e., the magnitude
of the complex visibility function) of an image, but not the Fourier
phase. In order to obtain an image it then becomes necessary to re-
trieve the Fourier phase. Since the autocorrelation function can be
computed as the inverse Fourier transform of the squared Fourier modu-
lus, the problem is equivalent to reconstructing an image from its aurec-
correlation.

In this paper we are concerned with the phase retrieval problem in
optical astronomy, in which case one cannot rely on such aids as closure
phase (Jennison 1958). However the results shown here do have relevance
to radio astronomy as well.

Several methods have been put forward for solving the phase retrieval
problem (Liu & Lohmann 1973; Napier & Bates 1974; Frieden & Currie 1976;
Baldwin & Warner 1978; Fienup 1978, 1979, 1982; Bates et al. 1982a). In
addition there are a number of reconstruction techniques that depend on
the specific method of data collection, for example, astronomical
speckle interferometry (Bates 1982b). Of the methods that would work
for the most general case, the iterative input-output Fourier transform
algorithm (Fienup 1978, 1979, 1982) appears to be the most practical.

When any of the reconstruction algorithms finds a soluticn, the question
remains: is it the only (unique) solution or is it one of many possible
(ambiguous) solutions? 1In Section 2 the theory of the uniqueness will
be briefly reviewed. Then in Section 3 experimental reconstruction
results will be shown that are consistent with the theory that the 2-D
case is usually unique. 1in addition, experimental reconstruction
results are shown that indicate that noise in the Fourier modulus data
does not radically change the unigqueness of the solution.
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Fienup: Experimental uniqueness of phase retrieval 2

2 UNIQUENESS THEORY

When we speak of the reconstruction being unique or ambig-
uous, we ignore translations and 180° rotations since neither of these
operations affects the Fourier modulus. Here we are also assuming that
the object has a finite spatial (or angular) extent.

The one-dimensional (1-D) phase retrieval problem has long been known to
be highly ambiguous {(Walther 1963). Only for the special cases of
objects known to consist of sufficiently separated parts or nonnegative
objects having sufficiently separated parts is the 1-D phase retrieval
problem usually unique (Greenaway 1977; Crimmins & Fienup 1983).

The 2-D case is quite different. This can best be understood from the
theory developed by Bruck and Sodin (1979). They considered the special
case of an object sampled on a rectangular lattice. For the 1-D case
the Fourier transform can then be expressed as a polynomial of order M
of a single complex variable, and such a polynomial can always be fact-
ored into M irreducible factors (by the fundamental theorem ofM§}gebra).
They showed that this implies that in the 1-D case there are 2 possi-
ble solutions, although not all of those solutions would satisfy a non-
negativity constraint (Bates 1969). On the other hand, polynomials of
two complex variables having arbitrary coefficients are only rarely
factorable. Consequently the 2-D case is usually unique. Although the
2-D theory for continuous functions has not yet been fully developed, it
is likely that a similar result will hold.

Of course one can always fabricate 2-D examples that are not unique. An
example is an object formed by convolving two nonnegative functions. A
second object, formed by convolving the first nonnegative function with
an inverted (i.e., rotated by 180°) version of the second nonnegative
function, has the same Fourier modulus as the first object. Another
method of synthesizing ambiguous cases was given by Huiser and wvan Toorn
(1980). However, these fabricated ambiguous objects are very special
cases--most 2-D objects do not fit into these categories.

There are also a number of classes of objects for which the phase re-
trieval problem is known to be unique (as opposed to just being usually
unique). For example, if the object includes an unresolved (delta-
function-like) point far enough away from the rest of the object, then
the autocorrelation includes the rest of the object as one of its terms
(Liuv & Lohmann 1973), analogous to holography. It has also been
recently discovered that for objects having a special support there is a
unique reconstruction even if the reference points are very close to the
rest of the object (Fiddy et al. 1983). The support of an object is the
set of points over which it is nonzero, i.e., its shape. Also using
latent reference points it can be shown that these and other objects
having certain supports can be uniquely reconstructed from their Fourier
modulus (Fienup 1983a). These recent results point to the importance of
the support of an object in determining whether the object can be
uniquely reconstructed from its Fourier modulus. Methods for recon-
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Fienup: Experimental uniqueness of phase retrieval 3

i
structing support information without resorting to a complete : )
reconstruction are also being investigated (Fienup et al. 1982). - =

3 UNIQUENESS EXPERIMENTS

3.1 Iterative reconstruction algorithm

One approach to determining whether most objects of interest
are uniquely reconstructable from their Fourier modulus is to perform a
number of reconstruction experiments. This is now possible due to the
existence of a practical reconstruction algorithm, the iterative Fourier
transform algorithm (Fienup 1978, 1979, 1982).

The iterative Fourier transform algorithm uses all the available mea- ) 4
surements and a priori information to arrive at a solution. 1In the o
Fourier domain one has the measured Fourier modulus data, which is an "1

estimate of the true modulus of the Fourier transform of the object. 1In SURIRE
the object domain one has the a priori constraint that the object's
spatial (or angular) brightness distribution is a nonnegative function.
From the Fourier modulus data one can compute an estimate of the ob-
ject's autocorrelation function. From the autocorrelation one can place
upper bounds on the diameter of the object (only in special cases can
the support of the object be readily determined from the support of its
autocorrelation) (Fienup et al. 1982).

The iterative Fourier transform algorithm is a modification of the
Gerchberg~Saxton (1972} algorithm that has been used in electron micros-
copy and for other applications (Fienup 1983b). The simplest version of
the iterative algorithm consists of the four following steps. (1) An
estimate of the object (an input image) is Fourier transformed. (2) The
resulting Fourier-domain function is forced to conform to the measure-
ments by replacing the computed Fourier modulus with the measured Four-
ier modulus. (3) The result is inverse Fourier transformed, yielding an
output image. (4) A new input image is formed by forcing the output
image to conform to the object-domain constraints, i.e., it is set equal
to zero where it is negative or where is exceeds the known diameter
(i.e., the support constraint). This algorithm, which we call the
error-reduction alg rithm, can be proven to converge in the sense that
the error at t k iteration is always less than or equal to the error
at the (k - 1) iteration. Here the error is defined as the amount by
which the computed Fourier modulus differs from the measured Fourier
modulus or ac the amount by which the output image violates the
object-domain constraints. However, in practice the error-reduction

} algorithm usually converges so slowly . at it is impractical for this

|

]

|

application (Fienup 1982).

<4
Fortunately there exist a number of accelerated versions of the algo- o f
| rithm which converge in a reasonable number of iterations. To date the el
| fastest version of the algorithm is the hybrid input-output algorithm. . {jﬁl
Its first three steps are identical to those of the error-reduction SRS
algorithm described above. The fourth step of the hybrid input-output .' K
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algorithm consists of forming a new input image that is equal to the
output image wherever the output image satisfies the constraints, and is
equal to the previous input image minus a constant factor times the
output image wherever the output image violates the constraints. Any
value between 0.5 and 1.0 works well for constant factor, which is
similar to a negative feedback parameter.

In one series of trials, the algorithm was run on a fabricated Fourier
modulus which was known to have two solutions. One of the two solutions
was reconstructed in about half of the trials and the other solution was
reconstructed in the other half of the trials. Which of the two solu-
tions was obtained depended on the array of random numbers used as the
initial input to the algorithm. Therefore we believe that if there are
multiple solutions, then the algorithm is equally likely to find any one
of them (if the initial input is sufficiently random and unbiased), and
if run enough times with different initial inputs, it will probably find
all of them. 1In a practical reconstruction situation in which the solu-
tion is not known beforehand, if one were to run the algorithm two or
three times, each time using a different array of random numbers for the
initial input, and if the reconstructed images were the same each time,
then one would be highly confident that one had found the solution and
that it is unique (Fienup 1979).

A problem with experimental reconstruction experiments is that there is
no guarantee that the iterative algorithm will converge to any solution,
even when an accelerated version of the algorithm is used. One can
think of the reconstruction algorithm as an iterative search through an
N -dimensional parameter space (each dimension or parameter correspond-
ing to the value of one of the pixels of the image), seeking to minimize
the error of the estimate. While searching for the global minimum of
the error, the algorithm could stagnate at a local minimum of the error
in that N -dimensional space. The likeljhood of stagnation and the
success of the algorithm depend on the N -dimensional topography of the
error function, which varies from one type of object to another.
Therefore, for particularly difficult objects, i.e., ones for which the
error has many local minima, one may not be able to test for uniqueness
since the reconstruction algorithm fails. Fortunately such a problem
has occurred only occasionally for the types of objects examined.

One particular convergence problem has occurred on several occasions.
Sometimes the algorithm stagnates at a deep local minimum at which the
output image resembles the original object but with a pattern of stripes
superimposed. A similar phenomenon has occurred in other reconstruction
situations (Cornwell 1983). In most cases the stripes are of low con-
trast, superimposed on an otherwise excellent reconstructed image, and
are of little concern. 1In other cases the stripes are of high enough
contrast to be objectionable. When the Fourier modulus data is suffi-
ciently noisy, then the stripes do not appear (Feldkamp & Fienup 1980).
The nature of the stripes is as yet not fully understood and methods of
avoiding them remain to be developed.
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Fienup: Experimental uniqueness of phase retrieval

An example of the stripes phenomenon is shown in Figure 1. Figure 1l(a)
shows the original object and Figure 1l(b) shows a reconstructed image,
which appears to be quite faithful. Figure l(c) shows the same recon-
structed image, but heavily overexposed, in order to emphasize the
low-contrast vertical stripes that are present, although difficult to
discern, in the image. Figures 1(d-f) show the overexposed reconstruct-
ed images resulting from three other trials of the algorithm, each of
which was initialized with a different array of random numbers. In
each of these three cases the reconstructed image contains a more easily
discernable pattern of stripes, but the spatial frequencies and orienta-
tions of the stripes are different in each case. The stripes extend
throughout image space (although they are weaker away from the support
of the object), and therefore by inspection of the reconstructed images
it is possible to determine that the stripes are an artifact rather than
a true feature of the object. Furthermore, it is possible to discern
the true image from the stripes since the stripes change from one recon-
struction to the next, but the true features of the object are present
in all the reconstructed images.

3.2 Experimental uniqueness results for various objects

The iterative reconstruction algorithm was used to recon-
struct a number of different objects from their Fourier modulus. The
objects examined are of a very practical and interesting class:
digitized photographs of satellites. They also share a feature that we
suspect makes them "good" objects to reconstruct: they have interesting
(i.e., complicated) shapes.

A typical result is shown in Figure 2, in which (a) is the original
object and (b) is the reconstructed image (Fienup 1981). For this and
almost all of the cases examined, the reconstructed image loocks much
like the original object except for differences that could be attributed
to stripes. For example, horizontal stripes are evident over portions
of the reconstructed image shown in Figure 2(b). Therefore, except for
the presence of the stripes artifact which we believe is a character-
istic of a local minimum rather than an inherent ambigquity, most objects
of this type are uniquely related to their Fourier modulus.

There are exceptions, however. Figure 3 shows one case that worked
particularly poorly. The object shown in Figure 3(a) is nearly centro-

symmetric. Figure 3(b) shows the reconstructed image, which is not very
faithful. This particular case has similarities with the ambiguous case

fabricated by Huiser and van Toorn (1980). From this we see that, al-
though ambiguous cases may be unusual, they are by no means nonexistent
in the real world.

3.3 Experimental uniqueness in the presence of noise

As with any reconstruction method the sensitivity of the
algorithm to noise is a major point of concern. Reconstruction results
using noisy Fourier modulus data have shown that the iterative Fourier
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Fienup: Experimental uniqueness of phase retrieval

Figure 1. (a) Original object; (b) image reconstructed
from Fourier modulus using iterative algorithm; (c)-(f)
four images reconstructed using different starting
inputs--these pictures were intentionally overexposed in
order to emphasize the stripes.

Figure 2. (a) A typical
object; (b) image recon-
structed from Fourier
modulus.

Figure 3. (a) An atypical
object, for which the re-
constructed image (b) does
not resemble the object.
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Fienup: Experimental uniqueness of phase retrieval 7

transform algorithm is not highly sensitive to noise (Fienup 1978,
1979). In thisg section the results of a systematic study of the noise
sensitivity of the reconstruction (Feldkamp & Fienup 1980) are
summarized.

When noise is present in the Fourier modulus data, then there is
generally no solution that is completely consistent with both the
measured data and the constraints. For example, an autocorrelation
function computed from a noisy Fourier modulus would be very likely to
have some negative values for the largest separations. Obviously no
nonnegative object can have an autocorrelation having negatives; there-
fore there could be no nonnegative object consistent with the noisy
Fourier modulus. Nevertheless the algorithm searches for a solution
that is most consistent with the measured data and constraints, and in
doing so it can arrive at a useful image.

Fourier modulus data was simulated to have the type of noise that would
be present in astronomical speckle interferometry. The object shown in
Figure l(a) was convolved with 156 different point-spread functions to
produce 156 different blurred images. Each of the point-spread func-
tions represents a different realization of the blurring due to the
turbulent atmosphere. The widths of the point-spread functions were
comparable to the width of the object. The blurred images were then
subjected to a Poisson noise process to simulate the effects of photon
noise. The degraded images were then processed to produce a noisy
Fourier modulus estimate by Labeyrie's (1970) method, as modified by
Goodman and Belsher (1976) to eliminate the bias noise term from the
squared Fourier modulus.

Figure 4 shows a noise-free Fourier modulus (a) and three examples of
the simulated noisy Fourier modulus estimates (b)-(d) with increasing
noise. Figure 5 shows the original undegraded object (a) and three
images (b)-(d) reconstructed from the respective noisy Fourier modulus
estimates of Figure 4. For the case shown in Figures 4(b) and 5(b),
which represent a realistic amount of noise for this situation, the
normalized rms error of the Fourier modulus estimate was 2.9% and the
reconstructed image is very good. For the case shown in Figures 4(c)
and 5(c), only 1/50 as many photons were assumed to be available, and
the rms error of the Fourier modulus estimate is a very poor 32%:
nevertheless the reconstructed image still retains some recognizable
features. In the case shown in Figures 4(d) and 5(d), an extreme amount
of noise was present, and the rms error of the Fourier modulus estimate
is near 100%; since this Fourier modulus estimate does not resemble the
true Fourier modulus, then, as one would expect, the reconstructed image
does not resemble the original object.

4. CONCLUSIONS
Theory, which points toward the conclusion that a 2-D object

of finite extent is ordinarily uniquely related to the modulus of its
Fourier transform, has been supported by experimental reconstruction re-
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Figure 4. Fourier modulus estimates with noise, having rms
error (a) 0%, (b) 2.9%, (c) 32%, (d) ~100%. T
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Figure 5. Images reconstructed from noisy Fourier modulus : 1
estimates shown in Figure 4.
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Fienup: Experimental uniqueness of phase retrieval 9

sults. The vast majority of reconstructed images of satellites resemble
the original objects from which the Fourier modulus was computed. Fur- »
thermore, contrary to some predictions (Huiser & van Toorn 1980), the )
uniqueness properties do not change radically when noise is present. e
Rather, as more noise is introduced into the Fourier modulus estimate, -
the reconstructed image simply becomes correspondingly noisier, and
degrades in a gradual manner.
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Appendix E
COMMENTS ON

“THE RECONSTRUCTION OF A MULTIDIMENSIONAL SEQUENCE
FROM THE PHASE OR MAGNITUDE OF ITS FOURIER TRANSFORM"

J.R. Fienup

Reprinted from IEEE Transactions on Acoustics, Speech, and Signal
Processing ASSP-31, 738-739 (June 1983).
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b Comments on “The Reconstruction of a Multidimensional - J
Sequence from the Phase or Magnitude of Its 1
1 Fourier Transform” .
| J. R. FIENUP L
T4
Abstract—When one imposes a nonnegativity constraint, one usually . -
can reconstruct a two-dimensional sequence of finite support from the
modulus of its Fourier transform using an iterative algorithm, even 1
when the initial estimate is an array of random numbers. . ]
® In a recent paper,' the description of an iterative algorithm . _:
for reconstructing a sequence from the magnitude of its K
Fourier transform unintentionally gives the appearance of dis- -
cussing an algorithm published earlier {1]. In the following,

Manuscript received July 13, 1982 revised November 29, 1982. This
work was supported in part by the Air Force Office of Scientific
Research,

The author is with the Environmmental Research Institute of Michigan,
Ann Arbor, M1 48107,

M. H. Hayes. JEFE Trans. Acoust.. Speech, Signal Prucessing, vol.
ASSP-30, pp. 140-154, Apr. 1982,
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the differences between the algorithm and experiments de-
scribed by Hayes! and those published earlier [1] are clarified.

Hayes! reviews both the problem of reconstructing a se-
quence from the phase of its Fourier transform and the prob-
lem of reconstructing a sequence from the magnitude of its
Fourier transform. For the latter problem, he describes an
iterative algorithm for solving the problem as follows. “Spe-
cifically, this algorithm involves the repeated Fourier transfor-
mation between the time and frequency domains where, in
each domain. the known information about the desired se-
quence is imposed on the current estimate. In the time do-
main, .for example, a sequence is constrained to have a given
region of support whereas in the frequency domain, the
sequence is constrained to have a given transform magni-
tude.”! He then shows examples where the algorithm de-
scribed above fails. This failure should not reflect poorly on
the earlier work [1] since the algorithm described in the quo-
tation above and the experiments performed by Hayes differ
in important ways from the earlier work. In Hayes experi-
ments, both the type of information which was assumed to be
known and the reconstruction algorithm which was used
differed from those of the earlier work [1].

Hayes is correct in stating' that the magnitude of the Fou-
rier transform is insufficient to uniquely specify a sequence;
additional information or constraints are required. Depending
on the application, one often has available additional informa-
tion or constraints, and a reconstruction may then be possible
[2]. {3]. Two important constraints which often occur (as in
astronomy) are a known support (or bounds on the support)

of a sequence, and the constraint that the sequence be nonneg- -

ative [4]. Unlike the algorithm used by Hayes,! the iterative
method described earlier [1] primarily uses the nonnegativity
constraint. Using the iterative algorithm, we have been very
successful in reconstructing two-dimensional nonnegative se-
quences from their Fourier magnitude [1]-[6]. In this case,
the sequences must have finite support, but it is possible to
reconstruct them even when the support is not known. Ex-
cept for special cases, it is not possible to determine the sup-
port of a sequence from the support of its autocorrelation
(which is the inverse Fourier transform of the squared Fourier
magnitude) [7]. so the support information is usually not
available anyway. One can only place upper bounds on the
support {7]. {f an upper bound on the support is utilized dur-
ing the iterations, then the algorithm converges faster (in
about 100 or 200 iterations for our work) than when using
only the nonnegativity constraint (in which case we found that
several hundred iterations are required).

Unlike the algorithm used by Hayes, the iterative algorithm
described earlier [1] does not simply satisfy the constraints
(nonnegativity and bounds on the support) in the time-domain
step of the iteration. Such an algorithm, which we refer to as
the error-reduction algorithm, was discussed earlier [1] where
it is noted that, ""For the present application, the error-reduc-
tion approach requires an impractically large number of itera-
tions for convergence.” It is only a version of the input-output
algorithm [1]-[6] which is capable of converging in 100 or so
iterations.

Hayes found that . if the initial estimate used in the
iteration has a Fourier transform with the correct magnitude
and either 7ero phase or random phase, then the iteration will
not generally converge to the correct sequence.”’!  However,
using the input-output algorithm with a nonnegativity con-
straint, we obtained good reconstruction results when the al-
gorithm was initialized with arrays of random numbers [1]-
[6]. The algorithm has also been shown to be surprisingly
insensitive to noise {5].

When the error-reduction algorithm was used with a non-
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negativity constraint (as well as a support constraint), 1t took
many thousands of iterations for convergence [3]. [6]. There:
fore, if one were to employ the error-reduction algorithm
without a nonnegativity constraint, then once would expect
convergence to take much longer, if it ever converges. Conse-
quently, it is consistent with our experience that the type of
reconstruction experiments performed by Hayes would be
unsuccessful.

Of course. there are situations for which the nonnegativity
constraint does not apply. Then one might wonder whether
it 1s possible to reconstruct a sequence of finite support from
its Fourier magnitude. Theory ([8], Hayes' ) seems to indicate
that the solution will usually be unique. However, as shown
by Hayes, the error-reduction algorithm is not a practical ap-
proach to finding the solution. One might possibly succeed
using an accelerated algorithm, such as the input-output al-
gorithm or a gradient search method [6]. but this is an area
that needs further work.

It should also be noted that in the phase retrieval problem of
X-ray crystallography, one reconstructs the three-dimensional
electron density function from its Fourier magnitude For
that problem, one has the constraints that the electron density
is nonnegative and that it consists of a discrete number of
atoms. For that problem, a number of reconstruction meth-
ods have been developed [9]. For the phase retrieval problem
in electron microscopy. for which both the wave function and
its Fourier transform are complex valued, one has the addi-
tional constraint of knowing the magnitude of the wave tunc-
tion. For that problem, the error-reduction algorithm has
been shown to perform very well [10]. [11].

In conclusion, Hayes' remark that . .. even for those se-
quences which are uniquely defined by their magnitude. 1t ap-
pears that a practical algorithm is yet to be developed for re-
constructing a sequence from only its magnitude™ 15 stricthy
true when no other information is available. however, tor g
number of important applications, there is auxiliary infor-
mation, such as a nonnegativity constraint, and practical re-
construction algorithms do exist.
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AMBIGUITY OF PHASE RETRIEVAL USING BOUNDARY CONDITIONS

J.R. Fienup
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ABSTRACT
It is shown that knowledge of the edges of an object is not always
sufficient to uniquely reconstruct an object from the modulus of its
Fourier tiansform via the autocorrelation function. On the other hand,
in some cases not only can the boundary values be determined from the
autocorrelation, but also the object can be reconstructed uniquely, even
for complex-valued objects.
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1. Introduction

i In a number of disciplines, including astronomy, x-ray
crystallography, electron microscopy, and wavefront sensing, one
encounters the phase retrieval problem. One wishes to reconstruct
f(m, n), an object function, from |F(p, g)|, the modulus of its Fourier

E transform, where : .
: F(p, q) = [F(p, q)| exp [iv(p, )] = FL[f(m, n)]
? P-1 Q-1 ]
o . |
= Z f(m, n) exp [-i2n(mp/P + nq/Q)], (1) N
- m=0 n=0 o
ﬁi where m, p=0, 1, ..., P~-1landn,q=20,1, ..., Q- 1. The discrete : _;;j
- transform is employed here since in practice one deals with sampled data L_~j
in a computer. The problem of reconstructing the object from its ";ﬂ
Fourier modulus is equivalent to reconstructing the Fourier phase, R
H wWp, q), from the Fourier modulus, since once one has the phase as well i
)
3 as the modulus, one can easily compute f(m, n) by the inverse (discrete) 1
. Fourier transform. rf(m, n), the (aperiodic) autocorrelation of 4
. f(m, n), is given by T
' c
® ' {
‘ M-1 N-1 4
4 rf(m, n) = f(j: k)f (J -m, k - n) (2) "
- j=0 k=0 ;
® ,
' M-1 N-1 ]
* -
g - £(3, KIF(G +m, k +n) (3) ]
g 370 k=0 3
® ) ;
. S
."1
» 2 \
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where the asterisk denotes complex conjugate and where it is assumed
that f(j, k) = 0 for m outside of [0, M - 1] and for n outside of [0, N
- 1]. Note that in order to avoid aliasing in the computation of

'F(p, q){z it is necessary to have M< P/2 and N < Q/2. Since the

autocorrelation function is easily computed from the Fourier modulus by

Eq. (4), the phase retrieval problem is equivalent to reconstructing an
object from its autocorrelation function.

Several phase retrieval algorithms have been proposed, all of them
requiring some additional measurements or constraints on the solution.
Examples include a reference point at least one object-diameter from the
object2 (giving rise to the holography condition3), a second intensity
measurement in another planea"5 (in electron microscopy or wavefront
sensing), nonnegativity and limited spatial extents"8 (in astronomy),
atomic mode]s9 (in x-ray crystallography), objects consisting of
collections of points having nonredundant spacingslo, and objects having
latent reference points11 (not satisfying the holography condition).
For each of these situations there is a proof of uniqueness of the
solution that relies on the types of measurements made, on the a priori
information available, or on the nature of the reconstruction algorithm

jtself.

Antoher proposed phase retrieval algorithm is a recursive one that
relies on a priori knowledge of the boundary conditions (i.e. the values
of the edges of the object).lz The purpose of this paper is to show
that the general uniqueness claims made concerning phase retrieval using

12 are incorrect; but by the approach of using latent
11

boundary conditions

reference points, special classes of objects can be shown to be

unique, for complex-valued objects as well as for real-valued objects.

—~—




T L aen o o e .
. e, A

— v-—nr*

— oy I A e A T S A S B et At S o S A e e

VERIM

—

2. Ambiguity Using Boundary Conditions

In Reference 12 a recursive algorithm was put forward for
reconstructing an object from the modulus of its Fourier transform, via
the autocorrelation function, using boundary conditions, i.e., assuming
knowledge of the edges of the object. A real-valued object, f(m, n),
was assumed to be zero outside of the rectangular region of support 0<
m< M-1and 0 <n <N- 1. The top and bottom nonzero rows, 3(m) =
f(m, N - 1) and «{(m) = f(m, 0), respectively, and the leftmost and
rightmost nonzero columns, f(0, n) and f(M - 1, n), respectively, are
assumed to be known a priori. Rows 1 and N - 2 can then be determined
by solving a system of 2M - 1 linear equations in 2M - 4 unknowns. For
example, from Eq. (3) we have, for n = N - 2, the second from the top
row of the autocorrelation:

M-1 N-1
*
MmN < 2) =) ) £ G+ m kN - 2)
Jj=0 k=0
M-1 M-1
* *
= 2 G OfG e m N -2+ ) (G, DFG e m N - 1)
i=0 30
M-1 M-1
* *
=) TR N2 e ) G DEG e ()
J=0 Jj=0

form=-M+1, ..., M- 1. These are 2M - 1 equations, one for each

value of m, in 2M - 4 unknowns, f(j, N - 2) and f(j, 1), for j = 1, 2,
.» M- 2. Recall that a(j), 8(j), f(0O, N -2), f(M- 1, N - 2),

f(0, 1) and f(M - 1, 1) are assumed known. After f(j, N - 2) and f(j,

1) are determined by solving the system of equations given in Eq. (5)

above, then one can solve for f(j, N - 3) and f(j, 2) using r(m, N - 3)

in a similar manner. The remaining rows of the object are solved

- -
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recursively in a similar manner. T

The method described above could work if the systems of equations =79
have a unique solution for the unknowns. Restricting the solution to i
12 '

real-valued f's, a c¢laim has been made that, "It may be shown,
however, that a sufficient condition for a unique solution ... to exist
is that o(m) and 8(m) not be identically zero and that o(m) not be o]
related to 3(M - 1 - m) by a constant scale factor." However, no proof
of that statement was provided. A counterexample to that claim is shown Ei;
in Figure 1. Figures 1(a) and 1(b) show two different functions having N
the same boundaries as each other, and for both objects a(m) is not S
proportional to B(M - 1 - m), and yet they have the same Fourier modulus '
and the same autocorrelation function, which is shown in Figure 1(c).
Therefore knowledge of the boundaries is not necessarily sufficient

information for a unigue reconstruction. el

—
An infinite number of counterexamples can be generated. From the T
theory of Bruck and Sodin13 it is known that the solution of the phase f"

retrieval problem [but not necessarily of Eq. (5)] is unique unless the :;q
Fourier transform of the object is a factorable polynomial, which is
unlikely to happen by chance for the two-dimensional case.
Factorability of the Fourier transform is equivalent to the object being
expressible as a convolution of two functions, and so ambiguous cases
can be constructed by forming an object by convolving (or
cross-correlating) two functions.14 The object in Figure 1(a) was
- fabricated by cross-correlating the functions shown in Figures 2(a) and
® 2(b). The ambiguous solution shown in Figure 1(b) is the inverted
convolution of the functions shown in Figures 2(a) and 2(b). An
infinite number of other ambiguous examples can be obtained by replacing
the values 1, 1, 1 and 2 of the function shown in Figure 2(b) by other
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.. PR
] o
PUPLY WP SIS TI )

® ‘ values, with minor restrictions on those values.
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The recursive algorithm12 involves the solution of 2M - 1 linear
equations in 2M - 4 unknowns. One problem with this is that for m = -M
+ 1 and form = M - 1, Eq. (5) involves only the known boundary values
and not the unknowns. Therefore one has only 2M - 3 linear equations in
2M - 4 unknowns to begin with. A second problem is that upon inspection
of those equations one finds that, for the ambiguous case shown in
Figure 1, two or more of them are dependent equations. Since the number
of remaining linear independent equations is fewer than the number of
unknowns, the problem is underdetermined and multiple solutions exist.

Consider the particular example of Figure 1(c), for which one
searches for solutions of the form shown in Figure 2(c), having the a
priori known boundary values. Of the 2M - 3 = 7 linear equations of Eq.
(5), utilizing the second row of Figure 1(c), one finds that three are
dependent, leaving only four independent equations in six unknowns.
Therefore one can, for example, choose values a and b in Figure 2(c)
arbitrarily, and then the values of ¢, d, e and f are determined. At
this point the algorithm of Reference 12 would have been stopped.
However, if one continues to solve the equations using the next row of
the autocorrelation, then one arrives at a quadratic equation in one of
the variables yielding exactly two solutions, those shown in Figures
1(a) and 1(b).

From the example discussed above it is seen that the recursive
algorithm of Reference 12 is much like the recursive algorithm of
Da]]ass, in which a tree of solations may grow with each iteration, and
ambiguities are resolved only if the tree can be pruned in later
iterations.
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3. Some Unique Cases

Despite the nonuniqueness demonstrated in the previous section,
there are some specific classes of objects for which the solution is
unique. These unique objects have supports (or shapes) of special L
types.

Certain classes of objects having latent reference points can be
reconstructed using a simpler recursive algorithm than the one described
in the previous section. The simpler recursive a]gorithm11 selects the
order of the equations being solved such that at each step one must ;n@
solve only a single linear equation for a single unknown, which is a .
trivial computation that always gives a unique result. It is required fj;
that no division by zero be allowed and this is ensured by the ti
requirement that the values of the latent reference points not be zero. ;;g
The latent reference points act in a similar manner to reference points -
for holography, only they do not initially satisfy the holographic -]
separation condition. Examples of objects that can be uniquely e
reconstructed in this manner include (Fiddy—Brames-Daintyls) objects ;;i
within a rectangle plus a point off one corner of the rectangle, and -
objects having other supports as weH.11 In most cases the support of

the object must be known a priori in order to ensure that one obtains a

unique reconstruciion, since it is usually not possible to deduce the
support of the object from the support of its autocorre]ationlo. -9
o8 However, for the Fiddy-Brames-Dainty15 objects the support can be .

deduced from the autocorrelation support, and so the reconstruction 1in ﬂ{ﬁ

that case is unconditionally um‘que.11 For these cases the objects may f:i
be complex-valued, in contrast with the restriction to real-valued o
objects for the reconstruction algorithm discussed in the previous ﬁ;
section. Furthermore, for these cases the boundary values need not be .*
> . known a priori since they are computed in the first step of the '*1
- recursive a]gorithmll’lz. S
B =
:‘ - ‘:‘*.-J
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4, Conclusions

Although boundary conditions are a powerful constraint for the
phase retrieval problem, it has been proven by counterexample that
knowledge of the boundary conditions (the values of the edges of the
object) is not sufficient to ensure a unique solution. In practice it
may be that a unique solution is usually obtained simply because 2-D
phase retrieval is usually unique even when the boundary conditions are

13

not known. It is not yet known what extra constraints are necessary

to ensure uniqueness in general,

What seems to be more important to ensure uniqueness is that the
object's support be a member of a special class of supports. It is not
yet known in general exactly what properties the support must have
(except for the special cases mentioned in the previous section) to
ensure uniqueness; but it is known that objects with separated
supportsl6’17 are more likely to be unique (even in the 1-D case) and
objects having complicated supports tend to be easier to reconstruct

than objects with convex symmetric support in the 2-D casels.

The value of the recursive algorithms may be more in their
predictions of uniqueness than in their ability to reconstruct images,

11’12. A more stable

since they tend to be very sensitive to noise
reconstruction method would be the iterative Fourier transform
approach6, which repeatedly reinforces both the measured data and the a

priori constraints on the reconstructed image.
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FIGURE CAPTIONS - 3
R
1. Counterexample to uniqueness c]aimslz. Two different objects 1
(a) and (b) have the same boundary values and also have the same » )
Fourier modulus and the same autocorrelation (c).

. 2. Functions (a) and (b) which generate the object shown in Figure y
1(a) by cross-correlation and in Figure 1(b) by convolution. .
:. The general form (c) of the objects which have the autocorrelation "a
2 shown in Figure 1(c). -
o |
- o
5 {
i D
——d




- s
;. A
!
]
To 4
N
o]
-4
- 4
4
2 3 3 2 3 3 3 1 i
3 4 4 2 3 3 6 6 2
3 5 4 2 3 4 5 6 2 =
1 2 2 12 2 2
(a) (b) o
2 7 1319 21 17 15 1 -
7 27 52 77 88 73 48 23 5 o
- 13 52 100 153 179 147 97 48 11 o
b S
h 15 63 123 188 230 188 123 63 15 g
" y
3 11 48 97 147 179 153 100 52 13
5 23 48 73 88 77 52 27 7 ]
. 1 5 1 7 21 19 13 7 2 '
' 4
b (c)
T - 4
- -';'-"‘-i
. 12 .9
Figure 1. Counterexample to uniquencss claims. © Two different objects,
(a) and (b), have the same boundary values and also have the same Fourier
modulus and the sawe autocorrelation (c). -
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Figure 2. Functions (a) and (b) which generate the object shown in
Fig. 1(a) by cross-correlation and in Fig. 1(b) by convolution. The .
general furm (c) of the objects which havc the autocorrelation shown )
in Fig. 1(c).
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